You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaed8.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521
  1. *> \brief \b SLAED8 used by SSTEDC. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLAED8 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed8.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed8.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed8.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO,
  22. * CUTPNT, Z, DLAMBDA, Q2, LDQ2, W, PERM, GIVPTR,
  23. * GIVCOL, GIVNUM, INDXP, INDX, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * INTEGER CUTPNT, GIVPTR, ICOMPQ, INFO, K, LDQ, LDQ2, N,
  27. * $ QSIZ
  28. * REAL RHO
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER GIVCOL( 2, * ), INDX( * ), INDXP( * ),
  32. * $ INDXQ( * ), PERM( * )
  33. * REAL D( * ), DLAMBDA( * ), GIVNUM( 2, * ),
  34. * $ Q( LDQ, * ), Q2( LDQ2, * ), W( * ), Z( * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> SLAED8 merges the two sets of eigenvalues together into a single
  44. *> sorted set. Then it tries to deflate the size of the problem.
  45. *> There are two ways in which deflation can occur: when two or more
  46. *> eigenvalues are close together or if there is a tiny element in the
  47. *> Z vector. For each such occurrence the order of the related secular
  48. *> equation problem is reduced by one.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] ICOMPQ
  55. *> \verbatim
  56. *> ICOMPQ is INTEGER
  57. *> = 0: Compute eigenvalues only.
  58. *> = 1: Compute eigenvectors of original dense symmetric matrix
  59. *> also. On entry, Q contains the orthogonal matrix used
  60. *> to reduce the original matrix to tridiagonal form.
  61. *> \endverbatim
  62. *>
  63. *> \param[out] K
  64. *> \verbatim
  65. *> K is INTEGER
  66. *> The number of non-deflated eigenvalues, and the order of the
  67. *> related secular equation.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] N
  71. *> \verbatim
  72. *> N is INTEGER
  73. *> The dimension of the symmetric tridiagonal matrix. N >= 0.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] QSIZ
  77. *> \verbatim
  78. *> QSIZ is INTEGER
  79. *> The dimension of the orthogonal matrix used to reduce
  80. *> the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
  81. *> \endverbatim
  82. *>
  83. *> \param[in,out] D
  84. *> \verbatim
  85. *> D is REAL array, dimension (N)
  86. *> On entry, the eigenvalues of the two submatrices to be
  87. *> combined. On exit, the trailing (N-K) updated eigenvalues
  88. *> (those which were deflated) sorted into increasing order.
  89. *> \endverbatim
  90. *>
  91. *> \param[in,out] Q
  92. *> \verbatim
  93. *> Q is REAL array, dimension (LDQ,N)
  94. *> If ICOMPQ = 0, Q is not referenced. Otherwise,
  95. *> on entry, Q contains the eigenvectors of the partially solved
  96. *> system which has been previously updated in matrix
  97. *> multiplies with other partially solved eigensystems.
  98. *> On exit, Q contains the trailing (N-K) updated eigenvectors
  99. *> (those which were deflated) in its last N-K columns.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] LDQ
  103. *> \verbatim
  104. *> LDQ is INTEGER
  105. *> The leading dimension of the array Q. LDQ >= max(1,N).
  106. *> \endverbatim
  107. *>
  108. *> \param[in] INDXQ
  109. *> \verbatim
  110. *> INDXQ is INTEGER array, dimension (N)
  111. *> The permutation which separately sorts the two sub-problems
  112. *> in D into ascending order. Note that elements in the second
  113. *> half of this permutation must first have CUTPNT added to
  114. *> their values in order to be accurate.
  115. *> \endverbatim
  116. *>
  117. *> \param[in,out] RHO
  118. *> \verbatim
  119. *> RHO is REAL
  120. *> On entry, the off-diagonal element associated with the rank-1
  121. *> cut which originally split the two submatrices which are now
  122. *> being recombined.
  123. *> On exit, RHO has been modified to the value required by
  124. *> SLAED3.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] CUTPNT
  128. *> \verbatim
  129. *> CUTPNT is INTEGER
  130. *> The location of the last eigenvalue in the leading
  131. *> sub-matrix. min(1,N) <= CUTPNT <= N.
  132. *> \endverbatim
  133. *>
  134. *> \param[in] Z
  135. *> \verbatim
  136. *> Z is REAL array, dimension (N)
  137. *> On entry, Z contains the updating vector (the last row of
  138. *> the first sub-eigenvector matrix and the first row of the
  139. *> second sub-eigenvector matrix).
  140. *> On exit, the contents of Z are destroyed by the updating
  141. *> process.
  142. *> \endverbatim
  143. *>
  144. *> \param[out] DLAMBDA
  145. *> \verbatim
  146. *> DLAMBDA is REAL array, dimension (N)
  147. *> A copy of the first K eigenvalues which will be used by
  148. *> SLAED3 to form the secular equation.
  149. *> \endverbatim
  150. *>
  151. *> \param[out] Q2
  152. *> \verbatim
  153. *> Q2 is REAL array, dimension (LDQ2,N)
  154. *> If ICOMPQ = 0, Q2 is not referenced. Otherwise,
  155. *> a copy of the first K eigenvectors which will be used by
  156. *> SLAED7 in a matrix multiply (SGEMM) to update the new
  157. *> eigenvectors.
  158. *> \endverbatim
  159. *>
  160. *> \param[in] LDQ2
  161. *> \verbatim
  162. *> LDQ2 is INTEGER
  163. *> The leading dimension of the array Q2. LDQ2 >= max(1,N).
  164. *> \endverbatim
  165. *>
  166. *> \param[out] W
  167. *> \verbatim
  168. *> W is REAL array, dimension (N)
  169. *> The first k values of the final deflation-altered z-vector and
  170. *> will be passed to SLAED3.
  171. *> \endverbatim
  172. *>
  173. *> \param[out] PERM
  174. *> \verbatim
  175. *> PERM is INTEGER array, dimension (N)
  176. *> The permutations (from deflation and sorting) to be applied
  177. *> to each eigenblock.
  178. *> \endverbatim
  179. *>
  180. *> \param[out] GIVPTR
  181. *> \verbatim
  182. *> GIVPTR is INTEGER
  183. *> The number of Givens rotations which took place in this
  184. *> subproblem.
  185. *> \endverbatim
  186. *>
  187. *> \param[out] GIVCOL
  188. *> \verbatim
  189. *> GIVCOL is INTEGER array, dimension (2, N)
  190. *> Each pair of numbers indicates a pair of columns to take place
  191. *> in a Givens rotation.
  192. *> \endverbatim
  193. *>
  194. *> \param[out] GIVNUM
  195. *> \verbatim
  196. *> GIVNUM is REAL array, dimension (2, N)
  197. *> Each number indicates the S value to be used in the
  198. *> corresponding Givens rotation.
  199. *> \endverbatim
  200. *>
  201. *> \param[out] INDXP
  202. *> \verbatim
  203. *> INDXP is INTEGER array, dimension (N)
  204. *> The permutation used to place deflated values of D at the end
  205. *> of the array. INDXP(1:K) points to the nondeflated D-values
  206. *> and INDXP(K+1:N) points to the deflated eigenvalues.
  207. *> \endverbatim
  208. *>
  209. *> \param[out] INDX
  210. *> \verbatim
  211. *> INDX is INTEGER array, dimension (N)
  212. *> The permutation used to sort the contents of D into ascending
  213. *> order.
  214. *> \endverbatim
  215. *>
  216. *> \param[out] INFO
  217. *> \verbatim
  218. *> INFO is INTEGER
  219. *> = 0: successful exit.
  220. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  221. *> \endverbatim
  222. *
  223. * Authors:
  224. * ========
  225. *
  226. *> \author Univ. of Tennessee
  227. *> \author Univ. of California Berkeley
  228. *> \author Univ. of Colorado Denver
  229. *> \author NAG Ltd.
  230. *
  231. *> \ingroup auxOTHERcomputational
  232. *
  233. *> \par Contributors:
  234. * ==================
  235. *>
  236. *> Jeff Rutter, Computer Science Division, University of California
  237. *> at Berkeley, USA
  238. *
  239. * =====================================================================
  240. SUBROUTINE SLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO,
  241. $ CUTPNT, Z, DLAMBDA, Q2, LDQ2, W, PERM, GIVPTR,
  242. $ GIVCOL, GIVNUM, INDXP, INDX, INFO )
  243. *
  244. * -- LAPACK computational routine --
  245. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  246. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  247. *
  248. * .. Scalar Arguments ..
  249. INTEGER CUTPNT, GIVPTR, ICOMPQ, INFO, K, LDQ, LDQ2, N,
  250. $ QSIZ
  251. REAL RHO
  252. * ..
  253. * .. Array Arguments ..
  254. INTEGER GIVCOL( 2, * ), INDX( * ), INDXP( * ),
  255. $ INDXQ( * ), PERM( * )
  256. REAL D( * ), DLAMBDA( * ), GIVNUM( 2, * ),
  257. $ Q( LDQ, * ), Q2( LDQ2, * ), W( * ), Z( * )
  258. * ..
  259. *
  260. * =====================================================================
  261. *
  262. * .. Parameters ..
  263. REAL MONE, ZERO, ONE, TWO, EIGHT
  264. PARAMETER ( MONE = -1.0E0, ZERO = 0.0E0, ONE = 1.0E0,
  265. $ TWO = 2.0E0, EIGHT = 8.0E0 )
  266. * ..
  267. * .. Local Scalars ..
  268. *
  269. INTEGER I, IMAX, J, JLAM, JMAX, JP, K2, N1, N1P1, N2
  270. REAL C, EPS, S, T, TAU, TOL
  271. * ..
  272. * .. External Functions ..
  273. INTEGER ISAMAX
  274. REAL SLAMCH, SLAPY2
  275. EXTERNAL ISAMAX, SLAMCH, SLAPY2
  276. * ..
  277. * .. External Subroutines ..
  278. EXTERNAL SCOPY, SLACPY, SLAMRG, SROT, SSCAL, XERBLA
  279. * ..
  280. * .. Intrinsic Functions ..
  281. INTRINSIC ABS, MAX, MIN, SQRT
  282. * ..
  283. * .. Executable Statements ..
  284. *
  285. * Test the input parameters.
  286. *
  287. INFO = 0
  288. *
  289. IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
  290. INFO = -1
  291. ELSE IF( N.LT.0 ) THEN
  292. INFO = -3
  293. ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
  294. INFO = -4
  295. ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
  296. INFO = -7
  297. ELSE IF( CUTPNT.LT.MIN( 1, N ) .OR. CUTPNT.GT.N ) THEN
  298. INFO = -10
  299. ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN
  300. INFO = -14
  301. END IF
  302. IF( INFO.NE.0 ) THEN
  303. CALL XERBLA( 'SLAED8', -INFO )
  304. RETURN
  305. END IF
  306. *
  307. * Need to initialize GIVPTR to O here in case of quick exit
  308. * to prevent an unspecified code behavior (usually sigfault)
  309. * when IWORK array on entry to *stedc is not zeroed
  310. * (or at least some IWORK entries which used in *laed7 for GIVPTR).
  311. *
  312. GIVPTR = 0
  313. *
  314. * Quick return if possible
  315. *
  316. IF( N.EQ.0 )
  317. $ RETURN
  318. *
  319. N1 = CUTPNT
  320. N2 = N - N1
  321. N1P1 = N1 + 1
  322. *
  323. IF( RHO.LT.ZERO ) THEN
  324. CALL SSCAL( N2, MONE, Z( N1P1 ), 1 )
  325. END IF
  326. *
  327. * Normalize z so that norm(z) = 1
  328. *
  329. T = ONE / SQRT( TWO )
  330. DO 10 J = 1, N
  331. INDX( J ) = J
  332. 10 CONTINUE
  333. CALL SSCAL( N, T, Z, 1 )
  334. RHO = ABS( TWO*RHO )
  335. *
  336. * Sort the eigenvalues into increasing order
  337. *
  338. DO 20 I = CUTPNT + 1, N
  339. INDXQ( I ) = INDXQ( I ) + CUTPNT
  340. 20 CONTINUE
  341. DO 30 I = 1, N
  342. DLAMBDA( I ) = D( INDXQ( I ) )
  343. W( I ) = Z( INDXQ( I ) )
  344. 30 CONTINUE
  345. I = 1
  346. J = CUTPNT + 1
  347. CALL SLAMRG( N1, N2, DLAMBDA, 1, 1, INDX )
  348. DO 40 I = 1, N
  349. D( I ) = DLAMBDA( INDX( I ) )
  350. Z( I ) = W( INDX( I ) )
  351. 40 CONTINUE
  352. *
  353. * Calculate the allowable deflation tolerance
  354. *
  355. IMAX = ISAMAX( N, Z, 1 )
  356. JMAX = ISAMAX( N, D, 1 )
  357. EPS = SLAMCH( 'Epsilon' )
  358. TOL = EIGHT*EPS*ABS( D( JMAX ) )
  359. *
  360. * If the rank-1 modifier is small enough, no more needs to be done
  361. * except to reorganize Q so that its columns correspond with the
  362. * elements in D.
  363. *
  364. IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
  365. K = 0
  366. IF( ICOMPQ.EQ.0 ) THEN
  367. DO 50 J = 1, N
  368. PERM( J ) = INDXQ( INDX( J ) )
  369. 50 CONTINUE
  370. ELSE
  371. DO 60 J = 1, N
  372. PERM( J ) = INDXQ( INDX( J ) )
  373. CALL SCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
  374. 60 CONTINUE
  375. CALL SLACPY( 'A', QSIZ, N, Q2( 1, 1 ), LDQ2, Q( 1, 1 ),
  376. $ LDQ )
  377. END IF
  378. RETURN
  379. END IF
  380. *
  381. * If there are multiple eigenvalues then the problem deflates. Here
  382. * the number of equal eigenvalues are found. As each equal
  383. * eigenvalue is found, an elementary reflector is computed to rotate
  384. * the corresponding eigensubspace so that the corresponding
  385. * components of Z are zero in this new basis.
  386. *
  387. K = 0
  388. K2 = N + 1
  389. DO 70 J = 1, N
  390. IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
  391. *
  392. * Deflate due to small z component.
  393. *
  394. K2 = K2 - 1
  395. INDXP( K2 ) = J
  396. IF( J.EQ.N )
  397. $ GO TO 110
  398. ELSE
  399. JLAM = J
  400. GO TO 80
  401. END IF
  402. 70 CONTINUE
  403. 80 CONTINUE
  404. J = J + 1
  405. IF( J.GT.N )
  406. $ GO TO 100
  407. IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
  408. *
  409. * Deflate due to small z component.
  410. *
  411. K2 = K2 - 1
  412. INDXP( K2 ) = J
  413. ELSE
  414. *
  415. * Check if eigenvalues are close enough to allow deflation.
  416. *
  417. S = Z( JLAM )
  418. C = Z( J )
  419. *
  420. * Find sqrt(a**2+b**2) without overflow or
  421. * destructive underflow.
  422. *
  423. TAU = SLAPY2( C, S )
  424. T = D( J ) - D( JLAM )
  425. C = C / TAU
  426. S = -S / TAU
  427. IF( ABS( T*C*S ).LE.TOL ) THEN
  428. *
  429. * Deflation is possible.
  430. *
  431. Z( J ) = TAU
  432. Z( JLAM ) = ZERO
  433. *
  434. * Record the appropriate Givens rotation
  435. *
  436. GIVPTR = GIVPTR + 1
  437. GIVCOL( 1, GIVPTR ) = INDXQ( INDX( JLAM ) )
  438. GIVCOL( 2, GIVPTR ) = INDXQ( INDX( J ) )
  439. GIVNUM( 1, GIVPTR ) = C
  440. GIVNUM( 2, GIVPTR ) = S
  441. IF( ICOMPQ.EQ.1 ) THEN
  442. CALL SROT( QSIZ, Q( 1, INDXQ( INDX( JLAM ) ) ), 1,
  443. $ Q( 1, INDXQ( INDX( J ) ) ), 1, C, S )
  444. END IF
  445. T = D( JLAM )*C*C + D( J )*S*S
  446. D( J ) = D( JLAM )*S*S + D( J )*C*C
  447. D( JLAM ) = T
  448. K2 = K2 - 1
  449. I = 1
  450. 90 CONTINUE
  451. IF( K2+I.LE.N ) THEN
  452. IF( D( JLAM ).LT.D( INDXP( K2+I ) ) ) THEN
  453. INDXP( K2+I-1 ) = INDXP( K2+I )
  454. INDXP( K2+I ) = JLAM
  455. I = I + 1
  456. GO TO 90
  457. ELSE
  458. INDXP( K2+I-1 ) = JLAM
  459. END IF
  460. ELSE
  461. INDXP( K2+I-1 ) = JLAM
  462. END IF
  463. JLAM = J
  464. ELSE
  465. K = K + 1
  466. W( K ) = Z( JLAM )
  467. DLAMBDA( K ) = D( JLAM )
  468. INDXP( K ) = JLAM
  469. JLAM = J
  470. END IF
  471. END IF
  472. GO TO 80
  473. 100 CONTINUE
  474. *
  475. * Record the last eigenvalue.
  476. *
  477. K = K + 1
  478. W( K ) = Z( JLAM )
  479. DLAMBDA( K ) = D( JLAM )
  480. INDXP( K ) = JLAM
  481. *
  482. 110 CONTINUE
  483. *
  484. * Sort the eigenvalues and corresponding eigenvectors into DLAMBDA
  485. * and Q2 respectively. The eigenvalues/vectors which were not
  486. * deflated go into the first K slots of DLAMBDA and Q2 respectively,
  487. * while those which were deflated go into the last N - K slots.
  488. *
  489. IF( ICOMPQ.EQ.0 ) THEN
  490. DO 120 J = 1, N
  491. JP = INDXP( J )
  492. DLAMBDA( J ) = D( JP )
  493. PERM( J ) = INDXQ( INDX( JP ) )
  494. 120 CONTINUE
  495. ELSE
  496. DO 130 J = 1, N
  497. JP = INDXP( J )
  498. DLAMBDA( J ) = D( JP )
  499. PERM( J ) = INDXQ( INDX( JP ) )
  500. CALL SCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
  501. 130 CONTINUE
  502. END IF
  503. *
  504. * The deflated eigenvalues and their corresponding vectors go back
  505. * into the last N - K slots of D and Q respectively.
  506. *
  507. IF( K.LT.N ) THEN
  508. IF( ICOMPQ.EQ.0 ) THEN
  509. CALL SCOPY( N-K, DLAMBDA( K+1 ), 1, D( K+1 ), 1 )
  510. ELSE
  511. CALL SCOPY( N-K, DLAMBDA( K+1 ), 1, D( K+1 ), 1 )
  512. CALL SLACPY( 'A', QSIZ, N-K, Q2( 1, K+1 ), LDQ2,
  513. $ Q( 1, K+1 ), LDQ )
  514. END IF
  515. END IF
  516. *
  517. RETURN
  518. *
  519. * End of SLAED8
  520. *
  521. END