You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sggrqf.f 9.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298
  1. *> \brief \b SGGRQF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SGGRQF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggrqf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggrqf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggrqf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK,
  22. * LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER INFO, LDA, LDB, LWORK, M, N, P
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
  29. * $ WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> SGGRQF computes a generalized RQ factorization of an M-by-N matrix A
  39. *> and a P-by-N matrix B:
  40. *>
  41. *> A = R*Q, B = Z*T*Q,
  42. *>
  43. *> where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
  44. *> matrix, and R and T assume one of the forms:
  45. *>
  46. *> if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N,
  47. *> N-M M ( R21 ) N
  48. *> N
  49. *>
  50. *> where R12 or R21 is upper triangular, and
  51. *>
  52. *> if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P,
  53. *> ( 0 ) P-N P N-P
  54. *> N
  55. *>
  56. *> where T11 is upper triangular.
  57. *>
  58. *> In particular, if B is square and nonsingular, the GRQ factorization
  59. *> of A and B implicitly gives the RQ factorization of A*inv(B):
  60. *>
  61. *> A*inv(B) = (R*inv(T))*Z**T
  62. *>
  63. *> where inv(B) denotes the inverse of the matrix B, and Z**T denotes the
  64. *> transpose of the matrix Z.
  65. *> \endverbatim
  66. *
  67. * Arguments:
  68. * ==========
  69. *
  70. *> \param[in] M
  71. *> \verbatim
  72. *> M is INTEGER
  73. *> The number of rows of the matrix A. M >= 0.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] P
  77. *> \verbatim
  78. *> P is INTEGER
  79. *> The number of rows of the matrix B. P >= 0.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] N
  83. *> \verbatim
  84. *> N is INTEGER
  85. *> The number of columns of the matrices A and B. N >= 0.
  86. *> \endverbatim
  87. *>
  88. *> \param[in,out] A
  89. *> \verbatim
  90. *> A is REAL array, dimension (LDA,N)
  91. *> On entry, the M-by-N matrix A.
  92. *> On exit, if M <= N, the upper triangle of the subarray
  93. *> A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R;
  94. *> if M > N, the elements on and above the (M-N)-th subdiagonal
  95. *> contain the M-by-N upper trapezoidal matrix R; the remaining
  96. *> elements, with the array TAUA, represent the orthogonal
  97. *> matrix Q as a product of elementary reflectors (see Further
  98. *> Details).
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LDA
  102. *> \verbatim
  103. *> LDA is INTEGER
  104. *> The leading dimension of the array A. LDA >= max(1,M).
  105. *> \endverbatim
  106. *>
  107. *> \param[out] TAUA
  108. *> \verbatim
  109. *> TAUA is REAL array, dimension (min(M,N))
  110. *> The scalar factors of the elementary reflectors which
  111. *> represent the orthogonal matrix Q (see Further Details).
  112. *> \endverbatim
  113. *>
  114. *> \param[in,out] B
  115. *> \verbatim
  116. *> B is REAL array, dimension (LDB,N)
  117. *> On entry, the P-by-N matrix B.
  118. *> On exit, the elements on and above the diagonal of the array
  119. *> contain the min(P,N)-by-N upper trapezoidal matrix T (T is
  120. *> upper triangular if P >= N); the elements below the diagonal,
  121. *> with the array TAUB, represent the orthogonal matrix Z as a
  122. *> product of elementary reflectors (see Further Details).
  123. *> \endverbatim
  124. *>
  125. *> \param[in] LDB
  126. *> \verbatim
  127. *> LDB is INTEGER
  128. *> The leading dimension of the array B. LDB >= max(1,P).
  129. *> \endverbatim
  130. *>
  131. *> \param[out] TAUB
  132. *> \verbatim
  133. *> TAUB is REAL array, dimension (min(P,N))
  134. *> The scalar factors of the elementary reflectors which
  135. *> represent the orthogonal matrix Z (see Further Details).
  136. *> \endverbatim
  137. *>
  138. *> \param[out] WORK
  139. *> \verbatim
  140. *> WORK is REAL array, dimension (MAX(1,LWORK))
  141. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  142. *> \endverbatim
  143. *>
  144. *> \param[in] LWORK
  145. *> \verbatim
  146. *> LWORK is INTEGER
  147. *> The dimension of the array WORK. LWORK >= max(1,N,M,P).
  148. *> For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
  149. *> where NB1 is the optimal blocksize for the RQ factorization
  150. *> of an M-by-N matrix, NB2 is the optimal blocksize for the
  151. *> QR factorization of a P-by-N matrix, and NB3 is the optimal
  152. *> blocksize for a call of SORMRQ.
  153. *>
  154. *> If LWORK = -1, then a workspace query is assumed; the routine
  155. *> only calculates the optimal size of the WORK array, returns
  156. *> this value as the first entry of the WORK array, and no error
  157. *> message related to LWORK is issued by XERBLA.
  158. *> \endverbatim
  159. *>
  160. *> \param[out] INFO
  161. *> \verbatim
  162. *> INFO is INTEGER
  163. *> = 0: successful exit
  164. *> < 0: if INF0= -i, the i-th argument had an illegal value.
  165. *> \endverbatim
  166. *
  167. * Authors:
  168. * ========
  169. *
  170. *> \author Univ. of Tennessee
  171. *> \author Univ. of California Berkeley
  172. *> \author Univ. of Colorado Denver
  173. *> \author NAG Ltd.
  174. *
  175. *> \ingroup ggrqf
  176. *
  177. *> \par Further Details:
  178. * =====================
  179. *>
  180. *> \verbatim
  181. *>
  182. *> The matrix Q is represented as a product of elementary reflectors
  183. *>
  184. *> Q = H(1) H(2) . . . H(k), where k = min(m,n).
  185. *>
  186. *> Each H(i) has the form
  187. *>
  188. *> H(i) = I - taua * v * v**T
  189. *>
  190. *> where taua is a real scalar, and v is a real vector with
  191. *> v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
  192. *> A(m-k+i,1:n-k+i-1), and taua in TAUA(i).
  193. *> To form Q explicitly, use LAPACK subroutine SORGRQ.
  194. *> To use Q to update another matrix, use LAPACK subroutine SORMRQ.
  195. *>
  196. *> The matrix Z is represented as a product of elementary reflectors
  197. *>
  198. *> Z = H(1) H(2) . . . H(k), where k = min(p,n).
  199. *>
  200. *> Each H(i) has the form
  201. *>
  202. *> H(i) = I - taub * v * v**T
  203. *>
  204. *> where taub is a real scalar, and v is a real vector with
  205. *> v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i),
  206. *> and taub in TAUB(i).
  207. *> To form Z explicitly, use LAPACK subroutine SORGQR.
  208. *> To use Z to update another matrix, use LAPACK subroutine SORMQR.
  209. *> \endverbatim
  210. *>
  211. * =====================================================================
  212. SUBROUTINE SGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK,
  213. $ LWORK, INFO )
  214. *
  215. * -- LAPACK computational routine --
  216. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  217. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  218. *
  219. * .. Scalar Arguments ..
  220. INTEGER INFO, LDA, LDB, LWORK, M, N, P
  221. * ..
  222. * .. Array Arguments ..
  223. REAL A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
  224. $ WORK( * )
  225. * ..
  226. *
  227. * =====================================================================
  228. *
  229. * .. Local Scalars ..
  230. LOGICAL LQUERY
  231. INTEGER LOPT, LWKOPT, NB, NB1, NB2, NB3
  232. * ..
  233. * .. External Subroutines ..
  234. EXTERNAL SGEQRF, SGERQF, SORMRQ, XERBLA
  235. * ..
  236. * .. External Functions ..
  237. INTEGER ILAENV
  238. REAL SROUNDUP_LWORK
  239. EXTERNAL ILAENV, SROUNDUP_LWORK
  240. * ..
  241. * .. Intrinsic Functions ..
  242. INTRINSIC INT, MAX, MIN
  243. * ..
  244. * .. Executable Statements ..
  245. *
  246. * Test the input parameters
  247. *
  248. INFO = 0
  249. NB1 = ILAENV( 1, 'SGERQF', ' ', M, N, -1, -1 )
  250. NB2 = ILAENV( 1, 'SGEQRF', ' ', P, N, -1, -1 )
  251. NB3 = ILAENV( 1, 'SORMRQ', ' ', M, N, P, -1 )
  252. NB = MAX( NB1, NB2, NB3 )
  253. LWKOPT = MAX( 1, MAX( N, M, P )*NB )
  254. WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
  255. LQUERY = ( LWORK.EQ.-1 )
  256. IF( M.LT.0 ) THEN
  257. INFO = -1
  258. ELSE IF( P.LT.0 ) THEN
  259. INFO = -2
  260. ELSE IF( N.LT.0 ) THEN
  261. INFO = -3
  262. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  263. INFO = -5
  264. ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  265. INFO = -8
  266. ELSE IF( LWORK.LT.MAX( 1, M, P, N ) .AND. .NOT.LQUERY ) THEN
  267. INFO = -11
  268. END IF
  269. IF( INFO.NE.0 ) THEN
  270. CALL XERBLA( 'SGGRQF', -INFO )
  271. RETURN
  272. ELSE IF( LQUERY ) THEN
  273. RETURN
  274. END IF
  275. *
  276. * RQ factorization of M-by-N matrix A: A = R*Q
  277. *
  278. CALL SGERQF( M, N, A, LDA, TAUA, WORK, LWORK, INFO )
  279. LOPT = INT( WORK( 1 ) )
  280. *
  281. * Update B := B*Q**T
  282. *
  283. CALL SORMRQ( 'Right', 'Transpose', P, N, MIN( M, N ),
  284. $ A( MAX( 1, M-N+1 ), 1 ), LDA, TAUA, B, LDB, WORK,
  285. $ LWORK, INFO )
  286. LOPT = MAX( LOPT, INT( WORK( 1 ) ) )
  287. *
  288. * QR factorization of P-by-N matrix B: B = Z*T
  289. *
  290. CALL SGEQRF( P, N, B, LDB, TAUB, WORK, LWORK, INFO )
  291. LWKOPT = MAX( LOPT, INT( WORK( 1 ) ) )
  292. WORK( 1 ) = SROUNDUP_LWORK( LWKOPT )
  293. *
  294. RETURN
  295. *
  296. * End of SGGRQF
  297. *
  298. END