You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgetsls.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492
  1. *> \brief \b SGETSLS
  2. *
  3. * Definition:
  4. * ===========
  5. *
  6. * SUBROUTINE SGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
  7. * $ WORK, LWORK, INFO )
  8. *
  9. * .. Scalar Arguments ..
  10. * CHARACTER TRANS
  11. * INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
  12. * ..
  13. * .. Array Arguments ..
  14. * REAL A( LDA, * ), B( LDB, * ), WORK( * )
  15. * ..
  16. *
  17. *
  18. *> \par Purpose:
  19. * =============
  20. *>
  21. *> \verbatim
  22. *>
  23. *> SGETSLS solves overdetermined or underdetermined real linear systems
  24. *> involving an M-by-N matrix A, using a tall skinny QR or short wide LQ
  25. *> factorization of A. It is assumed that A has full rank.
  26. *>
  27. *>
  28. *>
  29. *> The following options are provided:
  30. *>
  31. *> 1. If TRANS = 'N' and m >= n: find the least squares solution of
  32. *> an overdetermined system, i.e., solve the least squares problem
  33. *> minimize || B - A*X ||.
  34. *>
  35. *> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
  36. *> an underdetermined system A * X = B.
  37. *>
  38. *> 3. If TRANS = 'T' and m >= n: find the minimum norm solution of
  39. *> an undetermined system A**T * X = B.
  40. *>
  41. *> 4. If TRANS = 'T' and m < n: find the least squares solution of
  42. *> an overdetermined system, i.e., solve the least squares problem
  43. *> minimize || B - A**T * X ||.
  44. *>
  45. *> Several right hand side vectors b and solution vectors x can be
  46. *> handled in a single call; they are stored as the columns of the
  47. *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
  48. *> matrix X.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] TRANS
  55. *> \verbatim
  56. *> TRANS is CHARACTER*1
  57. *> = 'N': the linear system involves A;
  58. *> = 'T': the linear system involves A**T.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] M
  62. *> \verbatim
  63. *> M is INTEGER
  64. *> The number of rows of the matrix A. M >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] N
  68. *> \verbatim
  69. *> N is INTEGER
  70. *> The number of columns of the matrix A. N >= 0.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] NRHS
  74. *> \verbatim
  75. *> NRHS is INTEGER
  76. *> The number of right hand sides, i.e., the number of
  77. *> columns of the matrices B and X. NRHS >=0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in,out] A
  81. *> \verbatim
  82. *> A is REAL array, dimension (LDA,N)
  83. *> On entry, the M-by-N matrix A.
  84. *> On exit,
  85. *> A is overwritten by details of its QR or LQ
  86. *> factorization as returned by SGEQR or SGELQ.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDA
  90. *> \verbatim
  91. *> LDA is INTEGER
  92. *> The leading dimension of the array A. LDA >= max(1,M).
  93. *> \endverbatim
  94. *>
  95. *> \param[in,out] B
  96. *> \verbatim
  97. *> B is REAL array, dimension (LDB,NRHS)
  98. *> On entry, the matrix B of right hand side vectors, stored
  99. *> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
  100. *> if TRANS = 'T'.
  101. *> On exit, if INFO = 0, B is overwritten by the solution
  102. *> vectors, stored columnwise:
  103. *> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
  104. *> squares solution vectors.
  105. *> if TRANS = 'N' and m < n, rows 1 to N of B contain the
  106. *> minimum norm solution vectors;
  107. *> if TRANS = 'T' and m >= n, rows 1 to M of B contain the
  108. *> minimum norm solution vectors;
  109. *> if TRANS = 'T' and m < n, rows 1 to M of B contain the
  110. *> least squares solution vectors.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] LDB
  114. *> \verbatim
  115. *> LDB is INTEGER
  116. *> The leading dimension of the array B. LDB >= MAX(1,M,N).
  117. *> \endverbatim
  118. *>
  119. *> \param[out] WORK
  120. *> \verbatim
  121. *> (workspace) REAL array, dimension (MAX(1,LWORK))
  122. *> On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
  123. *> or optimal, if query was assumed) LWORK.
  124. *> See LWORK for details.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LWORK
  128. *> \verbatim
  129. *> LWORK is INTEGER
  130. *> The dimension of the array WORK. LWORK >= 1.
  131. *> If LWORK = -1 or -2, then a workspace query is assumed.
  132. *> If LWORK = -1, the routine calculates optimal size of WORK for the
  133. *> optimal performance and returns this value in WORK(1).
  134. *> If LWORK = -2, the routine calculates minimal size of WORK and
  135. *> returns this value in WORK(1).
  136. *> \endverbatim
  137. *>
  138. *> \param[out] INFO
  139. *> \verbatim
  140. *> INFO is INTEGER
  141. *> = 0: successful exit
  142. *> < 0: if INFO = -i, the i-th argument had an illegal value
  143. *> > 0: if INFO = i, the i-th diagonal element of the
  144. *> triangular factor of A is zero, so that A does not have
  145. *> full rank; the least squares solution could not be
  146. *> computed.
  147. *> \endverbatim
  148. *
  149. * Authors:
  150. * ========
  151. *
  152. *> \author Univ. of Tennessee
  153. *> \author Univ. of California Berkeley
  154. *> \author Univ. of Colorado Denver
  155. *> \author NAG Ltd.
  156. *
  157. *> \ingroup getsls
  158. *
  159. * =====================================================================
  160. SUBROUTINE SGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
  161. $ WORK, LWORK, INFO )
  162. *
  163. * -- LAPACK driver routine --
  164. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  165. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  166. *
  167. * .. Scalar Arguments ..
  168. CHARACTER TRANS
  169. INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
  170. * ..
  171. * .. Array Arguments ..
  172. REAL A( LDA, * ), B( LDB, * ), WORK( * )
  173. *
  174. * ..
  175. *
  176. * =====================================================================
  177. *
  178. * .. Parameters ..
  179. REAL ZERO, ONE
  180. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
  181. * ..
  182. * .. Local Scalars ..
  183. LOGICAL LQUERY, TRAN
  184. INTEGER I, IASCL, IBSCL, J, MAXMN, BROW,
  185. $ SCLLEN, TSZO, TSZM, LWO, LWM, LW1, LW2,
  186. $ WSIZEO, WSIZEM, INFO2
  187. REAL ANRM, BIGNUM, BNRM, SMLNUM, TQ( 5 ), WORKQ( 1 )
  188. * ..
  189. * .. External Functions ..
  190. LOGICAL LSAME
  191. REAL SLAMCH, SLANGE, SROUNDUP_LWORK
  192. EXTERNAL LSAME, SLAMCH, SLANGE, SROUNDUP_LWORK
  193. * ..
  194. * .. External Subroutines ..
  195. EXTERNAL SGEQR, SGEMQR, SLASCL, SLASET,
  196. $ STRTRS, XERBLA, SGELQ, SGEMLQ
  197. * ..
  198. * .. Intrinsic Functions ..
  199. INTRINSIC MAX, MIN, INT
  200. * ..
  201. * .. Executable Statements ..
  202. *
  203. * Test the input arguments.
  204. *
  205. INFO = 0
  206. MAXMN = MAX( M, N )
  207. TRAN = LSAME( TRANS, 'T' )
  208. *
  209. LQUERY = ( LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
  210. IF( .NOT.( LSAME( TRANS, 'N' ) .OR.
  211. $ LSAME( TRANS, 'T' ) ) ) THEN
  212. INFO = -1
  213. ELSE IF( M.LT.0 ) THEN
  214. INFO = -2
  215. ELSE IF( N.LT.0 ) THEN
  216. INFO = -3
  217. ELSE IF( NRHS.LT.0 ) THEN
  218. INFO = -4
  219. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  220. INFO = -6
  221. ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  222. INFO = -8
  223. END IF
  224. *
  225. IF( INFO.EQ.0 ) THEN
  226. *
  227. * Determine the optimum and minimum LWORK
  228. *
  229. IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  230. WSIZEO = 1
  231. WSIZEM = 1
  232. ELSE IF( M.GE.N ) THEN
  233. CALL SGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  234. TSZO = INT( TQ( 1 ) )
  235. LWO = INT( WORKQ( 1 ) )
  236. CALL SGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  237. $ TSZO, B, LDB, WORKQ, -1, INFO2 )
  238. LWO = MAX( LWO, INT( WORKQ( 1 ) ) )
  239. CALL SGEQR( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  240. TSZM = INT( TQ( 1 ) )
  241. LWM = INT( WORKQ( 1 ) )
  242. CALL SGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  243. $ TSZM, B, LDB, WORKQ, -1, INFO2 )
  244. LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
  245. WSIZEO = TSZO + LWO
  246. WSIZEM = TSZM + LWM
  247. ELSE
  248. CALL SGELQ( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  249. TSZO = INT( TQ( 1 ) )
  250. LWO = INT( WORKQ( 1 ) )
  251. CALL SGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  252. $ TSZO, B, LDB, WORKQ, -1, INFO2 )
  253. LWO = MAX( LWO, INT( WORKQ( 1 ) ) )
  254. CALL SGELQ( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  255. TSZM = INT( TQ( 1 ) )
  256. LWM = INT( WORKQ( 1 ) )
  257. CALL SGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  258. $ TSZM, B, LDB, WORKQ, -1, INFO2 )
  259. LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
  260. WSIZEO = TSZO + LWO
  261. WSIZEM = TSZM + LWM
  262. END IF
  263. *
  264. IF( ( LWORK.LT.WSIZEM ).AND.( .NOT.LQUERY ) ) THEN
  265. INFO = -10
  266. END IF
  267. *
  268. WORK( 1 ) = SROUNDUP_LWORK( WSIZEO )
  269. *
  270. END IF
  271. *
  272. IF( INFO.NE.0 ) THEN
  273. CALL XERBLA( 'SGETSLS', -INFO )
  274. RETURN
  275. END IF
  276. IF( LQUERY ) THEN
  277. IF( LWORK.EQ.-2 ) WORK( 1 ) = SROUNDUP_LWORK( WSIZEM )
  278. RETURN
  279. END IF
  280. IF( LWORK.LT.WSIZEO ) THEN
  281. LW1 = TSZM
  282. LW2 = LWM
  283. ELSE
  284. LW1 = TSZO
  285. LW2 = LWO
  286. END IF
  287. *
  288. * Quick return if possible
  289. *
  290. IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  291. CALL SLASET( 'FULL', MAX( M, N ), NRHS, ZERO, ZERO,
  292. $ B, LDB )
  293. RETURN
  294. END IF
  295. *
  296. * Get machine parameters
  297. *
  298. SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
  299. BIGNUM = ONE / SMLNUM
  300. *
  301. * Scale A, B if max element outside range [SMLNUM,BIGNUM]
  302. *
  303. ANRM = SLANGE( 'M', M, N, A, LDA, WORK )
  304. IASCL = 0
  305. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  306. *
  307. * Scale matrix norm up to SMLNUM
  308. *
  309. CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  310. IASCL = 1
  311. ELSE IF( ANRM.GT.BIGNUM ) THEN
  312. *
  313. * Scale matrix norm down to BIGNUM
  314. *
  315. CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  316. IASCL = 2
  317. ELSE IF( ANRM.EQ.ZERO ) THEN
  318. *
  319. * Matrix all zero. Return zero solution.
  320. *
  321. CALL SLASET( 'F', MAXMN, NRHS, ZERO, ZERO, B, LDB )
  322. GO TO 50
  323. END IF
  324. *
  325. BROW = M
  326. IF ( TRAN ) THEN
  327. BROW = N
  328. END IF
  329. BNRM = SLANGE( 'M', BROW, NRHS, B, LDB, WORK )
  330. IBSCL = 0
  331. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  332. *
  333. * Scale matrix norm up to SMLNUM
  334. *
  335. CALL SLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
  336. $ INFO )
  337. IBSCL = 1
  338. ELSE IF( BNRM.GT.BIGNUM ) THEN
  339. *
  340. * Scale matrix norm down to BIGNUM
  341. *
  342. CALL SLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
  343. $ INFO )
  344. IBSCL = 2
  345. END IF
  346. *
  347. IF ( M.GE.N ) THEN
  348. *
  349. * compute QR factorization of A
  350. *
  351. CALL SGEQR( M, N, A, LDA, WORK( LW2+1 ), LW1,
  352. $ WORK( 1 ), LW2, INFO )
  353. IF ( .NOT.TRAN ) THEN
  354. *
  355. * Least-Squares Problem min || A * X - B ||
  356. *
  357. * B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
  358. *
  359. CALL SGEMQR( 'L' , 'T', M, NRHS, N, A, LDA,
  360. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  361. $ INFO )
  362. *
  363. * B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
  364. *
  365. CALL STRTRS( 'U', 'N', 'N', N, NRHS,
  366. $ A, LDA, B, LDB, INFO )
  367. IF( INFO.GT.0 ) THEN
  368. RETURN
  369. END IF
  370. SCLLEN = N
  371. ELSE
  372. *
  373. * Overdetermined system of equations A**T * X = B
  374. *
  375. * B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
  376. *
  377. CALL STRTRS( 'U', 'T', 'N', N, NRHS,
  378. $ A, LDA, B, LDB, INFO )
  379. *
  380. IF( INFO.GT.0 ) THEN
  381. RETURN
  382. END IF
  383. *
  384. * B(N+1:M,1:NRHS) = ZERO
  385. *
  386. DO 20 J = 1, NRHS
  387. DO 10 I = N + 1, M
  388. B( I, J ) = ZERO
  389. 10 CONTINUE
  390. 20 CONTINUE
  391. *
  392. * B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
  393. *
  394. CALL SGEMQR( 'L', 'N', M, NRHS, N, A, LDA,
  395. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  396. $ INFO )
  397. *
  398. SCLLEN = M
  399. *
  400. END IF
  401. *
  402. ELSE
  403. *
  404. * Compute LQ factorization of A
  405. *
  406. CALL SGELQ( M, N, A, LDA, WORK( LW2+1 ), LW1,
  407. $ WORK( 1 ), LW2, INFO )
  408. *
  409. * workspace at least M, optimally M*NB.
  410. *
  411. IF( .NOT.TRAN ) THEN
  412. *
  413. * underdetermined system of equations A * X = B
  414. *
  415. * B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
  416. *
  417. CALL STRTRS( 'L', 'N', 'N', M, NRHS,
  418. $ A, LDA, B, LDB, INFO )
  419. *
  420. IF( INFO.GT.0 ) THEN
  421. RETURN
  422. END IF
  423. *
  424. * B(M+1:N,1:NRHS) = 0
  425. *
  426. DO 40 J = 1, NRHS
  427. DO 30 I = M + 1, N
  428. B( I, J ) = ZERO
  429. 30 CONTINUE
  430. 40 CONTINUE
  431. *
  432. * B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS)
  433. *
  434. CALL SGEMLQ( 'L', 'T', N, NRHS, M, A, LDA,
  435. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  436. $ INFO )
  437. *
  438. * workspace at least NRHS, optimally NRHS*NB
  439. *
  440. SCLLEN = N
  441. *
  442. ELSE
  443. *
  444. * overdetermined system min || A**T * X - B ||
  445. *
  446. * B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
  447. *
  448. CALL SGEMLQ( 'L', 'N', N, NRHS, M, A, LDA,
  449. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  450. $ INFO )
  451. *
  452. * workspace at least NRHS, optimally NRHS*NB
  453. *
  454. * B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
  455. *
  456. CALL STRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
  457. $ A, LDA, B, LDB, INFO )
  458. *
  459. IF( INFO.GT.0 ) THEN
  460. RETURN
  461. END IF
  462. *
  463. SCLLEN = M
  464. *
  465. END IF
  466. *
  467. END IF
  468. *
  469. * Undo scaling
  470. *
  471. IF( IASCL.EQ.1 ) THEN
  472. CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
  473. $ INFO )
  474. ELSE IF( IASCL.EQ.2 ) THEN
  475. CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
  476. $ INFO )
  477. END IF
  478. IF( IBSCL.EQ.1 ) THEN
  479. CALL SLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
  480. $ INFO )
  481. ELSE IF( IBSCL.EQ.2 ) THEN
  482. CALL SLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
  483. $ INFO )
  484. END IF
  485. *
  486. 50 CONTINUE
  487. WORK( 1 ) = SROUNDUP_LWORK( TSZO + LWO )
  488. RETURN
  489. *
  490. * End of SGETSLS
  491. *
  492. END