You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtptri.f 6.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238
  1. *> \brief \b DTPTRI
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DTPTRI + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtptri.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtptri.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtptri.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DTPTRI( UPLO, DIAG, N, AP, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER DIAG, UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION AP( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DTPTRI computes the inverse of a real upper or lower triangular
  38. *> matrix A stored in packed format.
  39. *> \endverbatim
  40. *
  41. * Arguments:
  42. * ==========
  43. *
  44. *> \param[in] UPLO
  45. *> \verbatim
  46. *> UPLO is CHARACTER*1
  47. *> = 'U': A is upper triangular;
  48. *> = 'L': A is lower triangular.
  49. *> \endverbatim
  50. *>
  51. *> \param[in] DIAG
  52. *> \verbatim
  53. *> DIAG is CHARACTER*1
  54. *> = 'N': A is non-unit triangular;
  55. *> = 'U': A is unit triangular.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] AP
  65. *> \verbatim
  66. *> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
  67. *> On entry, the upper or lower triangular matrix A, stored
  68. *> columnwise in a linear array. The j-th column of A is stored
  69. *> in the array AP as follows:
  70. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  71. *> if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
  72. *> See below for further details.
  73. *> On exit, the (triangular) inverse of the original matrix, in
  74. *> the same packed storage format.
  75. *> \endverbatim
  76. *>
  77. *> \param[out] INFO
  78. *> \verbatim
  79. *> INFO is INTEGER
  80. *> = 0: successful exit
  81. *> < 0: if INFO = -i, the i-th argument had an illegal value
  82. *> > 0: if INFO = i, A(i,i) is exactly zero. The triangular
  83. *> matrix is singular and its inverse can not be computed.
  84. *> \endverbatim
  85. *
  86. * Authors:
  87. * ========
  88. *
  89. *> \author Univ. of Tennessee
  90. *> \author Univ. of California Berkeley
  91. *> \author Univ. of Colorado Denver
  92. *> \author NAG Ltd.
  93. *
  94. *> \ingroup doubleOTHERcomputational
  95. *
  96. *> \par Further Details:
  97. * =====================
  98. *>
  99. *> \verbatim
  100. *>
  101. *> A triangular matrix A can be transferred to packed storage using one
  102. *> of the following program segments:
  103. *>
  104. *> UPLO = 'U': UPLO = 'L':
  105. *>
  106. *> JC = 1 JC = 1
  107. *> DO 2 J = 1, N DO 2 J = 1, N
  108. *> DO 1 I = 1, J DO 1 I = J, N
  109. *> AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J)
  110. *> 1 CONTINUE 1 CONTINUE
  111. *> JC = JC + J JC = JC + N - J + 1
  112. *> 2 CONTINUE 2 CONTINUE
  113. *> \endverbatim
  114. *>
  115. * =====================================================================
  116. SUBROUTINE DTPTRI( UPLO, DIAG, N, AP, INFO )
  117. *
  118. * -- LAPACK computational routine --
  119. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  120. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  121. *
  122. * .. Scalar Arguments ..
  123. CHARACTER DIAG, UPLO
  124. INTEGER INFO, N
  125. * ..
  126. * .. Array Arguments ..
  127. DOUBLE PRECISION AP( * )
  128. * ..
  129. *
  130. * =====================================================================
  131. *
  132. * .. Parameters ..
  133. DOUBLE PRECISION ONE, ZERO
  134. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  135. * ..
  136. * .. Local Scalars ..
  137. LOGICAL NOUNIT, UPPER
  138. INTEGER J, JC, JCLAST, JJ
  139. DOUBLE PRECISION AJJ
  140. * ..
  141. * .. External Functions ..
  142. LOGICAL LSAME
  143. EXTERNAL LSAME
  144. * ..
  145. * .. External Subroutines ..
  146. EXTERNAL DSCAL, DTPMV, XERBLA
  147. * ..
  148. * .. Executable Statements ..
  149. *
  150. * Test the input parameters.
  151. *
  152. INFO = 0
  153. UPPER = LSAME( UPLO, 'U' )
  154. NOUNIT = LSAME( DIAG, 'N' )
  155. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  156. INFO = -1
  157. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  158. INFO = -2
  159. ELSE IF( N.LT.0 ) THEN
  160. INFO = -3
  161. END IF
  162. IF( INFO.NE.0 ) THEN
  163. CALL XERBLA( 'DTPTRI', -INFO )
  164. RETURN
  165. END IF
  166. *
  167. * Check for singularity if non-unit.
  168. *
  169. IF( NOUNIT ) THEN
  170. IF( UPPER ) THEN
  171. JJ = 0
  172. DO 10 INFO = 1, N
  173. JJ = JJ + INFO
  174. IF( AP( JJ ).EQ.ZERO )
  175. $ RETURN
  176. 10 CONTINUE
  177. ELSE
  178. JJ = 1
  179. DO 20 INFO = 1, N
  180. IF( AP( JJ ).EQ.ZERO )
  181. $ RETURN
  182. JJ = JJ + N - INFO + 1
  183. 20 CONTINUE
  184. END IF
  185. INFO = 0
  186. END IF
  187. *
  188. IF( UPPER ) THEN
  189. *
  190. * Compute inverse of upper triangular matrix.
  191. *
  192. JC = 1
  193. DO 30 J = 1, N
  194. IF( NOUNIT ) THEN
  195. AP( JC+J-1 ) = ONE / AP( JC+J-1 )
  196. AJJ = -AP( JC+J-1 )
  197. ELSE
  198. AJJ = -ONE
  199. END IF
  200. *
  201. * Compute elements 1:j-1 of j-th column.
  202. *
  203. CALL DTPMV( 'Upper', 'No transpose', DIAG, J-1, AP,
  204. $ AP( JC ), 1 )
  205. CALL DSCAL( J-1, AJJ, AP( JC ), 1 )
  206. JC = JC + J
  207. 30 CONTINUE
  208. *
  209. ELSE
  210. *
  211. * Compute inverse of lower triangular matrix.
  212. *
  213. JC = N*( N+1 ) / 2
  214. DO 40 J = N, 1, -1
  215. IF( NOUNIT ) THEN
  216. AP( JC ) = ONE / AP( JC )
  217. AJJ = -AP( JC )
  218. ELSE
  219. AJJ = -ONE
  220. END IF
  221. IF( J.LT.N ) THEN
  222. *
  223. * Compute elements j+1:n of j-th column.
  224. *
  225. CALL DTPMV( 'Lower', 'No transpose', DIAG, N-J,
  226. $ AP( JCLAST ), AP( JC+1 ), 1 )
  227. CALL DSCAL( N-J, AJJ, AP( JC+1 ), 1 )
  228. END IF
  229. JCLAST = JC
  230. JC = JC - N + J - 2
  231. 40 CONTINUE
  232. END IF
  233. *
  234. RETURN
  235. *
  236. * End of DTPTRI
  237. *
  238. END