You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dstein.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450
  1. *> \brief \b DSTEIN
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSTEIN + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstein.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstein.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstein.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
  22. * IWORK, IFAIL, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER INFO, LDZ, M, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IBLOCK( * ), IFAIL( * ), ISPLIT( * ),
  29. * $ IWORK( * )
  30. * DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DSTEIN computes the eigenvectors of a real symmetric tridiagonal
  40. *> matrix T corresponding to specified eigenvalues, using inverse
  41. *> iteration.
  42. *>
  43. *> The maximum number of iterations allowed for each eigenvector is
  44. *> specified by an internal parameter MAXITS (currently set to 5).
  45. *> \endverbatim
  46. *
  47. * Arguments:
  48. * ==========
  49. *
  50. *> \param[in] N
  51. *> \verbatim
  52. *> N is INTEGER
  53. *> The order of the matrix. N >= 0.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] D
  57. *> \verbatim
  58. *> D is DOUBLE PRECISION array, dimension (N)
  59. *> The n diagonal elements of the tridiagonal matrix T.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] E
  63. *> \verbatim
  64. *> E is DOUBLE PRECISION array, dimension (N-1)
  65. *> The (n-1) subdiagonal elements of the tridiagonal matrix
  66. *> T, in elements 1 to N-1.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] M
  70. *> \verbatim
  71. *> M is INTEGER
  72. *> The number of eigenvectors to be found. 0 <= M <= N.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] W
  76. *> \verbatim
  77. *> W is DOUBLE PRECISION array, dimension (N)
  78. *> The first M elements of W contain the eigenvalues for
  79. *> which eigenvectors are to be computed. The eigenvalues
  80. *> should be grouped by split-off block and ordered from
  81. *> smallest to largest within the block. ( The output array
  82. *> W from DSTEBZ with ORDER = 'B' is expected here. )
  83. *> \endverbatim
  84. *>
  85. *> \param[in] IBLOCK
  86. *> \verbatim
  87. *> IBLOCK is INTEGER array, dimension (N)
  88. *> The submatrix indices associated with the corresponding
  89. *> eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to
  90. *> the first submatrix from the top, =2 if W(i) belongs to
  91. *> the second submatrix, etc. ( The output array IBLOCK
  92. *> from DSTEBZ is expected here. )
  93. *> \endverbatim
  94. *>
  95. *> \param[in] ISPLIT
  96. *> \verbatim
  97. *> ISPLIT is INTEGER array, dimension (N)
  98. *> The splitting points, at which T breaks up into submatrices.
  99. *> The first submatrix consists of rows/columns 1 to
  100. *> ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
  101. *> through ISPLIT( 2 ), etc.
  102. *> ( The output array ISPLIT from DSTEBZ is expected here. )
  103. *> \endverbatim
  104. *>
  105. *> \param[out] Z
  106. *> \verbatim
  107. *> Z is DOUBLE PRECISION array, dimension (LDZ, M)
  108. *> The computed eigenvectors. The eigenvector associated
  109. *> with the eigenvalue W(i) is stored in the i-th column of
  110. *> Z. Any vector which fails to converge is set to its current
  111. *> iterate after MAXITS iterations.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] LDZ
  115. *> \verbatim
  116. *> LDZ is INTEGER
  117. *> The leading dimension of the array Z. LDZ >= max(1,N).
  118. *> \endverbatim
  119. *>
  120. *> \param[out] WORK
  121. *> \verbatim
  122. *> WORK is DOUBLE PRECISION array, dimension (5*N)
  123. *> \endverbatim
  124. *>
  125. *> \param[out] IWORK
  126. *> \verbatim
  127. *> IWORK is INTEGER array, dimension (N)
  128. *> \endverbatim
  129. *>
  130. *> \param[out] IFAIL
  131. *> \verbatim
  132. *> IFAIL is INTEGER array, dimension (M)
  133. *> On normal exit, all elements of IFAIL are zero.
  134. *> If one or more eigenvectors fail to converge after
  135. *> MAXITS iterations, then their indices are stored in
  136. *> array IFAIL.
  137. *> \endverbatim
  138. *>
  139. *> \param[out] INFO
  140. *> \verbatim
  141. *> INFO is INTEGER
  142. *> = 0: successful exit.
  143. *> < 0: if INFO = -i, the i-th argument had an illegal value
  144. *> > 0: if INFO = i, then i eigenvectors failed to converge
  145. *> in MAXITS iterations. Their indices are stored in
  146. *> array IFAIL.
  147. *> \endverbatim
  148. *
  149. *> \par Internal Parameters:
  150. * =========================
  151. *>
  152. *> \verbatim
  153. *> MAXITS INTEGER, default = 5
  154. *> The maximum number of iterations performed.
  155. *>
  156. *> EXTRA INTEGER, default = 2
  157. *> The number of iterations performed after norm growth
  158. *> criterion is satisfied, should be at least 1.
  159. *> \endverbatim
  160. *
  161. * Authors:
  162. * ========
  163. *
  164. *> \author Univ. of Tennessee
  165. *> \author Univ. of California Berkeley
  166. *> \author Univ. of Colorado Denver
  167. *> \author NAG Ltd.
  168. *
  169. *> \ingroup doubleOTHERcomputational
  170. *
  171. * =====================================================================
  172. SUBROUTINE DSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
  173. $ IWORK, IFAIL, INFO )
  174. *
  175. * -- LAPACK computational routine --
  176. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  177. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  178. *
  179. * .. Scalar Arguments ..
  180. INTEGER INFO, LDZ, M, N
  181. * ..
  182. * .. Array Arguments ..
  183. INTEGER IBLOCK( * ), IFAIL( * ), ISPLIT( * ),
  184. $ IWORK( * )
  185. DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
  186. * ..
  187. *
  188. * =====================================================================
  189. *
  190. * .. Parameters ..
  191. DOUBLE PRECISION ZERO, ONE, TEN, ODM3, ODM1
  192. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 1.0D+1,
  193. $ ODM3 = 1.0D-3, ODM1 = 1.0D-1 )
  194. INTEGER MAXITS, EXTRA
  195. PARAMETER ( MAXITS = 5, EXTRA = 2 )
  196. * ..
  197. * .. Local Scalars ..
  198. INTEGER B1, BLKSIZ, BN, GPIND, I, IINFO, INDRV1,
  199. $ INDRV2, INDRV3, INDRV4, INDRV5, ITS, J, J1,
  200. $ JBLK, JMAX, NBLK, NRMCHK
  201. DOUBLE PRECISION DTPCRT, EPS, EPS1, NRM, ONENRM, ORTOL, PERTOL,
  202. $ SCL, SEP, TOL, XJ, XJM, ZTR
  203. * ..
  204. * .. Local Arrays ..
  205. INTEGER ISEED( 4 )
  206. * ..
  207. * .. External Functions ..
  208. INTEGER IDAMAX
  209. DOUBLE PRECISION DDOT, DLAMCH, DNRM2
  210. EXTERNAL IDAMAX, DDOT, DLAMCH, DNRM2
  211. * ..
  212. * .. External Subroutines ..
  213. EXTERNAL DAXPY, DCOPY, DLAGTF, DLAGTS, DLARNV, DSCAL,
  214. $ XERBLA
  215. * ..
  216. * .. Intrinsic Functions ..
  217. INTRINSIC ABS, MAX, SQRT
  218. * ..
  219. * .. Executable Statements ..
  220. *
  221. * Test the input parameters.
  222. *
  223. INFO = 0
  224. DO 10 I = 1, M
  225. IFAIL( I ) = 0
  226. 10 CONTINUE
  227. *
  228. IF( N.LT.0 ) THEN
  229. INFO = -1
  230. ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
  231. INFO = -4
  232. ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN
  233. INFO = -9
  234. ELSE
  235. DO 20 J = 2, M
  236. IF( IBLOCK( J ).LT.IBLOCK( J-1 ) ) THEN
  237. INFO = -6
  238. GO TO 30
  239. END IF
  240. IF( IBLOCK( J ).EQ.IBLOCK( J-1 ) .AND. W( J ).LT.W( J-1 ) )
  241. $ THEN
  242. INFO = -5
  243. GO TO 30
  244. END IF
  245. 20 CONTINUE
  246. 30 CONTINUE
  247. END IF
  248. *
  249. IF( INFO.NE.0 ) THEN
  250. CALL XERBLA( 'DSTEIN', -INFO )
  251. RETURN
  252. END IF
  253. *
  254. * Quick return if possible
  255. *
  256. IF( N.EQ.0 .OR. M.EQ.0 ) THEN
  257. RETURN
  258. ELSE IF( N.EQ.1 ) THEN
  259. Z( 1, 1 ) = ONE
  260. RETURN
  261. END IF
  262. *
  263. * Get machine constants.
  264. *
  265. EPS = DLAMCH( 'Precision' )
  266. *
  267. * Initialize seed for random number generator DLARNV.
  268. *
  269. DO 40 I = 1, 4
  270. ISEED( I ) = 1
  271. 40 CONTINUE
  272. *
  273. * Initialize pointers.
  274. *
  275. INDRV1 = 0
  276. INDRV2 = INDRV1 + N
  277. INDRV3 = INDRV2 + N
  278. INDRV4 = INDRV3 + N
  279. INDRV5 = INDRV4 + N
  280. *
  281. * Compute eigenvectors of matrix blocks.
  282. *
  283. J1 = 1
  284. DO 160 NBLK = 1, IBLOCK( M )
  285. *
  286. * Find starting and ending indices of block nblk.
  287. *
  288. IF( NBLK.EQ.1 ) THEN
  289. B1 = 1
  290. ELSE
  291. B1 = ISPLIT( NBLK-1 ) + 1
  292. END IF
  293. BN = ISPLIT( NBLK )
  294. BLKSIZ = BN - B1 + 1
  295. IF( BLKSIZ.EQ.1 )
  296. $ GO TO 60
  297. GPIND = J1
  298. *
  299. * Compute reorthogonalization criterion and stopping criterion.
  300. *
  301. ONENRM = ABS( D( B1 ) ) + ABS( E( B1 ) )
  302. ONENRM = MAX( ONENRM, ABS( D( BN ) )+ABS( E( BN-1 ) ) )
  303. DO 50 I = B1 + 1, BN - 1
  304. ONENRM = MAX( ONENRM, ABS( D( I ) )+ABS( E( I-1 ) )+
  305. $ ABS( E( I ) ) )
  306. 50 CONTINUE
  307. ORTOL = ODM3*ONENRM
  308. *
  309. DTPCRT = SQRT( ODM1 / BLKSIZ )
  310. *
  311. * Loop through eigenvalues of block nblk.
  312. *
  313. 60 CONTINUE
  314. JBLK = 0
  315. DO 150 J = J1, M
  316. IF( IBLOCK( J ).NE.NBLK ) THEN
  317. J1 = J
  318. GO TO 160
  319. END IF
  320. JBLK = JBLK + 1
  321. XJ = W( J )
  322. *
  323. * Skip all the work if the block size is one.
  324. *
  325. IF( BLKSIZ.EQ.1 ) THEN
  326. WORK( INDRV1+1 ) = ONE
  327. GO TO 120
  328. END IF
  329. *
  330. * If eigenvalues j and j-1 are too close, add a relatively
  331. * small perturbation.
  332. *
  333. IF( JBLK.GT.1 ) THEN
  334. EPS1 = ABS( EPS*XJ )
  335. PERTOL = TEN*EPS1
  336. SEP = XJ - XJM
  337. IF( SEP.LT.PERTOL )
  338. $ XJ = XJM + PERTOL
  339. END IF
  340. *
  341. ITS = 0
  342. NRMCHK = 0
  343. *
  344. * Get random starting vector.
  345. *
  346. CALL DLARNV( 2, ISEED, BLKSIZ, WORK( INDRV1+1 ) )
  347. *
  348. * Copy the matrix T so it won't be destroyed in factorization.
  349. *
  350. CALL DCOPY( BLKSIZ, D( B1 ), 1, WORK( INDRV4+1 ), 1 )
  351. CALL DCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV2+2 ), 1 )
  352. CALL DCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV3+1 ), 1 )
  353. *
  354. * Compute LU factors with partial pivoting ( PT = LU )
  355. *
  356. TOL = ZERO
  357. CALL DLAGTF( BLKSIZ, WORK( INDRV4+1 ), XJ, WORK( INDRV2+2 ),
  358. $ WORK( INDRV3+1 ), TOL, WORK( INDRV5+1 ), IWORK,
  359. $ IINFO )
  360. *
  361. * Update iteration count.
  362. *
  363. 70 CONTINUE
  364. ITS = ITS + 1
  365. IF( ITS.GT.MAXITS )
  366. $ GO TO 100
  367. *
  368. * Normalize and scale the righthand side vector Pb.
  369. *
  370. JMAX = IDAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
  371. SCL = BLKSIZ*ONENRM*MAX( EPS,
  372. $ ABS( WORK( INDRV4+BLKSIZ ) ) ) /
  373. $ ABS( WORK( INDRV1+JMAX ) )
  374. CALL DSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
  375. *
  376. * Solve the system LU = Pb.
  377. *
  378. CALL DLAGTS( -1, BLKSIZ, WORK( INDRV4+1 ), WORK( INDRV2+2 ),
  379. $ WORK( INDRV3+1 ), WORK( INDRV5+1 ), IWORK,
  380. $ WORK( INDRV1+1 ), TOL, IINFO )
  381. *
  382. * Reorthogonalize by modified Gram-Schmidt if eigenvalues are
  383. * close enough.
  384. *
  385. IF( JBLK.EQ.1 )
  386. $ GO TO 90
  387. IF( ABS( XJ-XJM ).GT.ORTOL )
  388. $ GPIND = J
  389. IF( GPIND.NE.J ) THEN
  390. DO 80 I = GPIND, J - 1
  391. ZTR = -DDOT( BLKSIZ, WORK( INDRV1+1 ), 1, Z( B1, I ),
  392. $ 1 )
  393. CALL DAXPY( BLKSIZ, ZTR, Z( B1, I ), 1,
  394. $ WORK( INDRV1+1 ), 1 )
  395. 80 CONTINUE
  396. END IF
  397. *
  398. * Check the infinity norm of the iterate.
  399. *
  400. 90 CONTINUE
  401. JMAX = IDAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
  402. NRM = ABS( WORK( INDRV1+JMAX ) )
  403. *
  404. * Continue for additional iterations after norm reaches
  405. * stopping criterion.
  406. *
  407. IF( NRM.LT.DTPCRT )
  408. $ GO TO 70
  409. NRMCHK = NRMCHK + 1
  410. IF( NRMCHK.LT.EXTRA+1 )
  411. $ GO TO 70
  412. *
  413. GO TO 110
  414. *
  415. * If stopping criterion was not satisfied, update info and
  416. * store eigenvector number in array ifail.
  417. *
  418. 100 CONTINUE
  419. INFO = INFO + 1
  420. IFAIL( INFO ) = J
  421. *
  422. * Accept iterate as jth eigenvector.
  423. *
  424. 110 CONTINUE
  425. SCL = ONE / DNRM2( BLKSIZ, WORK( INDRV1+1 ), 1 )
  426. JMAX = IDAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
  427. IF( WORK( INDRV1+JMAX ).LT.ZERO )
  428. $ SCL = -SCL
  429. CALL DSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
  430. 120 CONTINUE
  431. DO 130 I = 1, N
  432. Z( I, J ) = ZERO
  433. 130 CONTINUE
  434. DO 140 I = 1, BLKSIZ
  435. Z( B1+I-1, J ) = WORK( INDRV1+I )
  436. 140 CONTINUE
  437. *
  438. * Save the shift to check eigenvalue spacing at next
  439. * iteration.
  440. *
  441. XJM = XJ
  442. *
  443. 150 CONTINUE
  444. 160 CONTINUE
  445. *
  446. RETURN
  447. *
  448. * End of DSTEIN
  449. *
  450. END