You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csytri_3x.f 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644
  1. *> \brief \b CSYTRI_3X
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CSYTRI_3X + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csytri_3x.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csytri_3x.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csytri_3x.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, N, NB
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 A( LDA, * ), E( * ), WORK( N+NB+1, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *> CSYTRI_3X computes the inverse of a complex symmetric indefinite
  38. *> matrix A using the factorization computed by CSYTRF_RK or CSYTRF_BK:
  39. *>
  40. *> A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
  41. *>
  42. *> where U (or L) is unit upper (or lower) triangular matrix,
  43. *> U**T (or L**T) is the transpose of U (or L), P is a permutation
  44. *> matrix, P**T is the transpose of P, and D is symmetric and block
  45. *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
  46. *>
  47. *> This is the blocked version of the algorithm, calling Level 3 BLAS.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] UPLO
  54. *> \verbatim
  55. *> UPLO is CHARACTER*1
  56. *> Specifies whether the details of the factorization are
  57. *> stored as an upper or lower triangular matrix.
  58. *> = 'U': Upper triangle of A is stored;
  59. *> = 'L': Lower triangle of A is stored.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The order of the matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in,out] A
  69. *> \verbatim
  70. *> A is COMPLEX array, dimension (LDA,N)
  71. *> On entry, diagonal of the block diagonal matrix D and
  72. *> factors U or L as computed by CSYTRF_RK and CSYTRF_BK:
  73. *> a) ONLY diagonal elements of the symmetric block diagonal
  74. *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
  75. *> (superdiagonal (or subdiagonal) elements of D
  76. *> should be provided on entry in array E), and
  77. *> b) If UPLO = 'U': factor U in the superdiagonal part of A.
  78. *> If UPLO = 'L': factor L in the subdiagonal part of A.
  79. *>
  80. *> On exit, if INFO = 0, the symmetric inverse of the original
  81. *> matrix.
  82. *> If UPLO = 'U': the upper triangular part of the inverse
  83. *> is formed and the part of A below the diagonal is not
  84. *> referenced;
  85. *> If UPLO = 'L': the lower triangular part of the inverse
  86. *> is formed and the part of A above the diagonal is not
  87. *> referenced.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] LDA
  91. *> \verbatim
  92. *> LDA is INTEGER
  93. *> The leading dimension of the array A. LDA >= max(1,N).
  94. *> \endverbatim
  95. *>
  96. *> \param[in] E
  97. *> \verbatim
  98. *> E is COMPLEX array, dimension (N)
  99. *> On entry, contains the superdiagonal (or subdiagonal)
  100. *> elements of the symmetric block diagonal matrix D
  101. *> with 1-by-1 or 2-by-2 diagonal blocks, where
  102. *> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced;
  103. *> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced.
  104. *>
  105. *> NOTE: For 1-by-1 diagonal block D(k), where
  106. *> 1 <= k <= N, the element E(k) is not referenced in both
  107. *> UPLO = 'U' or UPLO = 'L' cases.
  108. *> \endverbatim
  109. *>
  110. *> \param[in] IPIV
  111. *> \verbatim
  112. *> IPIV is INTEGER array, dimension (N)
  113. *> Details of the interchanges and the block structure of D
  114. *> as determined by CSYTRF_RK or CSYTRF_BK.
  115. *> \endverbatim
  116. *>
  117. *> \param[out] WORK
  118. *> \verbatim
  119. *> WORK is COMPLEX array, dimension (N+NB+1,NB+3).
  120. *> \endverbatim
  121. *>
  122. *> \param[in] NB
  123. *> \verbatim
  124. *> NB is INTEGER
  125. *> Block size.
  126. *> \endverbatim
  127. *>
  128. *> \param[out] INFO
  129. *> \verbatim
  130. *> INFO is INTEGER
  131. *> = 0: successful exit
  132. *> < 0: if INFO = -i, the i-th argument had an illegal value
  133. *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
  134. *> inverse could not be computed.
  135. *> \endverbatim
  136. *
  137. * Authors:
  138. * ========
  139. *
  140. *> \author Univ. of Tennessee
  141. *> \author Univ. of California Berkeley
  142. *> \author Univ. of Colorado Denver
  143. *> \author NAG Ltd.
  144. *
  145. *> \ingroup complexSYcomputational
  146. *
  147. *> \par Contributors:
  148. * ==================
  149. *> \verbatim
  150. *>
  151. *> June 2017, Igor Kozachenko,
  152. *> Computer Science Division,
  153. *> University of California, Berkeley
  154. *>
  155. *> \endverbatim
  156. *
  157. * =====================================================================
  158. SUBROUTINE CSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
  159. *
  160. * -- LAPACK computational routine --
  161. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  162. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  163. *
  164. * .. Scalar Arguments ..
  165. CHARACTER UPLO
  166. INTEGER INFO, LDA, N, NB
  167. * ..
  168. * .. Array Arguments ..
  169. INTEGER IPIV( * )
  170. COMPLEX A( LDA, * ), E( * ), WORK( N+NB+1, * )
  171. * ..
  172. *
  173. * =====================================================================
  174. *
  175. * .. Parameters ..
  176. COMPLEX CONE, CZERO
  177. PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ),
  178. $ CZERO = ( 0.0E+0, 0.0E+0 ) )
  179. * ..
  180. * .. Local Scalars ..
  181. LOGICAL UPPER
  182. INTEGER CUT, I, ICOUNT, INVD, IP, K, NNB, J, U11
  183. COMPLEX AK, AKKP1, AKP1, D, T, U01_I_J, U01_IP1_J,
  184. $ U11_I_J, U11_IP1_J
  185. * ..
  186. * .. External Functions ..
  187. LOGICAL LSAME
  188. EXTERNAL LSAME
  189. * ..
  190. * .. External Subroutines ..
  191. EXTERNAL CGEMM, CSYSWAPR, CTRTRI, CTRMM, XERBLA
  192. * ..
  193. * .. Intrinsic Functions ..
  194. INTRINSIC ABS, MAX, MOD
  195. * ..
  196. * .. Executable Statements ..
  197. *
  198. * Test the input parameters.
  199. *
  200. INFO = 0
  201. UPPER = LSAME( UPLO, 'U' )
  202. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  203. INFO = -1
  204. ELSE IF( N.LT.0 ) THEN
  205. INFO = -2
  206. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  207. INFO = -4
  208. END IF
  209. *
  210. * Quick return if possible
  211. *
  212. IF( INFO.NE.0 ) THEN
  213. CALL XERBLA( 'CSYTRI_3X', -INFO )
  214. RETURN
  215. END IF
  216. IF( N.EQ.0 )
  217. $ RETURN
  218. *
  219. * Workspace got Non-diag elements of D
  220. *
  221. DO K = 1, N
  222. WORK( K, 1 ) = E( K )
  223. END DO
  224. *
  225. * Check that the diagonal matrix D is nonsingular.
  226. *
  227. IF( UPPER ) THEN
  228. *
  229. * Upper triangular storage: examine D from bottom to top
  230. *
  231. DO INFO = N, 1, -1
  232. IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
  233. $ RETURN
  234. END DO
  235. ELSE
  236. *
  237. * Lower triangular storage: examine D from top to bottom.
  238. *
  239. DO INFO = 1, N
  240. IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
  241. $ RETURN
  242. END DO
  243. END IF
  244. *
  245. INFO = 0
  246. *
  247. * Splitting Workspace
  248. * U01 is a block ( N, NB+1 )
  249. * The first element of U01 is in WORK( 1, 1 )
  250. * U11 is a block ( NB+1, NB+1 )
  251. * The first element of U11 is in WORK( N+1, 1 )
  252. *
  253. U11 = N
  254. *
  255. * INVD is a block ( N, 2 )
  256. * The first element of INVD is in WORK( 1, INVD )
  257. *
  258. INVD = NB + 2
  259. IF( UPPER ) THEN
  260. *
  261. * Begin Upper
  262. *
  263. * invA = P * inv(U**T) * inv(D) * inv(U) * P**T.
  264. *
  265. CALL CTRTRI( UPLO, 'U', N, A, LDA, INFO )
  266. *
  267. * inv(D) and inv(D) * inv(U)
  268. *
  269. K = 1
  270. DO WHILE( K.LE.N )
  271. IF( IPIV( K ).GT.0 ) THEN
  272. * 1 x 1 diagonal NNB
  273. WORK( K, INVD ) = CONE / A( K, K )
  274. WORK( K, INVD+1 ) = CZERO
  275. ELSE
  276. * 2 x 2 diagonal NNB
  277. T = WORK( K+1, 1 )
  278. AK = A( K, K ) / T
  279. AKP1 = A( K+1, K+1 ) / T
  280. AKKP1 = WORK( K+1, 1 ) / T
  281. D = T*( AK*AKP1-CONE )
  282. WORK( K, INVD ) = AKP1 / D
  283. WORK( K+1, INVD+1 ) = AK / D
  284. WORK( K, INVD+1 ) = -AKKP1 / D
  285. WORK( K+1, INVD ) = WORK( K, INVD+1 )
  286. K = K + 1
  287. END IF
  288. K = K + 1
  289. END DO
  290. *
  291. * inv(U**T) = (inv(U))**T
  292. *
  293. * inv(U**T) * inv(D) * inv(U)
  294. *
  295. CUT = N
  296. DO WHILE( CUT.GT.0 )
  297. NNB = NB
  298. IF( CUT.LE.NNB ) THEN
  299. NNB = CUT
  300. ELSE
  301. ICOUNT = 0
  302. * count negative elements,
  303. DO I = CUT+1-NNB, CUT
  304. IF( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
  305. END DO
  306. * need a even number for a clear cut
  307. IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
  308. END IF
  309. CUT = CUT - NNB
  310. *
  311. * U01 Block
  312. *
  313. DO I = 1, CUT
  314. DO J = 1, NNB
  315. WORK( I, J ) = A( I, CUT+J )
  316. END DO
  317. END DO
  318. *
  319. * U11 Block
  320. *
  321. DO I = 1, NNB
  322. WORK( U11+I, I ) = CONE
  323. DO J = 1, I-1
  324. WORK( U11+I, J ) = CZERO
  325. END DO
  326. DO J = I+1, NNB
  327. WORK( U11+I, J ) = A( CUT+I, CUT+J )
  328. END DO
  329. END DO
  330. *
  331. * invD * U01
  332. *
  333. I = 1
  334. DO WHILE( I.LE.CUT )
  335. IF( IPIV( I ).GT.0 ) THEN
  336. DO J = 1, NNB
  337. WORK( I, J ) = WORK( I, INVD ) * WORK( I, J )
  338. END DO
  339. ELSE
  340. DO J = 1, NNB
  341. U01_I_J = WORK( I, J )
  342. U01_IP1_J = WORK( I+1, J )
  343. WORK( I, J ) = WORK( I, INVD ) * U01_I_J
  344. $ + WORK( I, INVD+1 ) * U01_IP1_J
  345. WORK( I+1, J ) = WORK( I+1, INVD ) * U01_I_J
  346. $ + WORK( I+1, INVD+1 ) * U01_IP1_J
  347. END DO
  348. I = I + 1
  349. END IF
  350. I = I + 1
  351. END DO
  352. *
  353. * invD1 * U11
  354. *
  355. I = 1
  356. DO WHILE ( I.LE.NNB )
  357. IF( IPIV( CUT+I ).GT.0 ) THEN
  358. DO J = I, NNB
  359. WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  360. END DO
  361. ELSE
  362. DO J = I, NNB
  363. U11_I_J = WORK(U11+I,J)
  364. U11_IP1_J = WORK(U11+I+1,J)
  365. WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  366. $ + WORK(CUT+I,INVD+1) * WORK(U11+I+1,J)
  367. WORK( U11+I+1, J ) = WORK(CUT+I+1,INVD) * U11_I_J
  368. $ + WORK(CUT+I+1,INVD+1) * U11_IP1_J
  369. END DO
  370. I = I + 1
  371. END IF
  372. I = I + 1
  373. END DO
  374. *
  375. * U11**T * invD1 * U11 -> U11
  376. *
  377. CALL CTRMM( 'L', 'U', 'T', 'U', NNB, NNB,
  378. $ CONE, A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
  379. $ N+NB+1 )
  380. *
  381. DO I = 1, NNB
  382. DO J = I, NNB
  383. A( CUT+I, CUT+J ) = WORK( U11+I, J )
  384. END DO
  385. END DO
  386. *
  387. * U01**T * invD * U01 -> A( CUT+I, CUT+J )
  388. *
  389. CALL CGEMM( 'T', 'N', NNB, NNB, CUT, CONE, A( 1, CUT+1 ),
  390. $ LDA, WORK, N+NB+1, CZERO, WORK(U11+1,1),
  391. $ N+NB+1 )
  392. *
  393. * U11 = U11**T * invD1 * U11 + U01**T * invD * U01
  394. *
  395. DO I = 1, NNB
  396. DO J = I, NNB
  397. A( CUT+I, CUT+J ) = A( CUT+I, CUT+J ) + WORK(U11+I,J)
  398. END DO
  399. END DO
  400. *
  401. * U01 = U00**T * invD0 * U01
  402. *
  403. CALL CTRMM( 'L', UPLO, 'T', 'U', CUT, NNB,
  404. $ CONE, A, LDA, WORK, N+NB+1 )
  405. *
  406. * Update U01
  407. *
  408. DO I = 1, CUT
  409. DO J = 1, NNB
  410. A( I, CUT+J ) = WORK( I, J )
  411. END DO
  412. END DO
  413. *
  414. * Next Block
  415. *
  416. END DO
  417. *
  418. * Apply PERMUTATIONS P and P**T:
  419. * P * inv(U**T) * inv(D) * inv(U) * P**T.
  420. * Interchange rows and columns I and IPIV(I) in reverse order
  421. * from the formation order of IPIV vector for Upper case.
  422. *
  423. * ( We can use a loop over IPIV with increment 1,
  424. * since the ABS value of IPIV(I) represents the row (column)
  425. * index of the interchange with row (column) i in both 1x1
  426. * and 2x2 pivot cases, i.e. we don't need separate code branches
  427. * for 1x1 and 2x2 pivot cases )
  428. *
  429. DO I = 1, N
  430. IP = ABS( IPIV( I ) )
  431. IF( IP.NE.I ) THEN
  432. IF (I .LT. IP) CALL CSYSWAPR( UPLO, N, A, LDA, I ,IP )
  433. IF (I .GT. IP) CALL CSYSWAPR( UPLO, N, A, LDA, IP ,I )
  434. END IF
  435. END DO
  436. *
  437. ELSE
  438. *
  439. * Begin Lower
  440. *
  441. * inv A = P * inv(L**T) * inv(D) * inv(L) * P**T.
  442. *
  443. CALL CTRTRI( UPLO, 'U', N, A, LDA, INFO )
  444. *
  445. * inv(D) and inv(D) * inv(L)
  446. *
  447. K = N
  448. DO WHILE ( K .GE. 1 )
  449. IF( IPIV( K ).GT.0 ) THEN
  450. * 1 x 1 diagonal NNB
  451. WORK( K, INVD ) = CONE / A( K, K )
  452. WORK( K, INVD+1 ) = CZERO
  453. ELSE
  454. * 2 x 2 diagonal NNB
  455. T = WORK( K-1, 1 )
  456. AK = A( K-1, K-1 ) / T
  457. AKP1 = A( K, K ) / T
  458. AKKP1 = WORK( K-1, 1 ) / T
  459. D = T*( AK*AKP1-CONE )
  460. WORK( K-1, INVD ) = AKP1 / D
  461. WORK( K, INVD ) = AK / D
  462. WORK( K, INVD+1 ) = -AKKP1 / D
  463. WORK( K-1, INVD+1 ) = WORK( K, INVD+1 )
  464. K = K - 1
  465. END IF
  466. K = K - 1
  467. END DO
  468. *
  469. * inv(L**T) = (inv(L))**T
  470. *
  471. * inv(L**T) * inv(D) * inv(L)
  472. *
  473. CUT = 0
  474. DO WHILE( CUT.LT.N )
  475. NNB = NB
  476. IF( (CUT + NNB).GT.N ) THEN
  477. NNB = N - CUT
  478. ELSE
  479. ICOUNT = 0
  480. * count negative elements,
  481. DO I = CUT + 1, CUT+NNB
  482. IF ( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
  483. END DO
  484. * need a even number for a clear cut
  485. IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
  486. END IF
  487. *
  488. * L21 Block
  489. *
  490. DO I = 1, N-CUT-NNB
  491. DO J = 1, NNB
  492. WORK( I, J ) = A( CUT+NNB+I, CUT+J )
  493. END DO
  494. END DO
  495. *
  496. * L11 Block
  497. *
  498. DO I = 1, NNB
  499. WORK( U11+I, I) = CONE
  500. DO J = I+1, NNB
  501. WORK( U11+I, J ) = CZERO
  502. END DO
  503. DO J = 1, I-1
  504. WORK( U11+I, J ) = A( CUT+I, CUT+J )
  505. END DO
  506. END DO
  507. *
  508. * invD*L21
  509. *
  510. I = N-CUT-NNB
  511. DO WHILE( I.GE.1 )
  512. IF( IPIV( CUT+NNB+I ).GT.0 ) THEN
  513. DO J = 1, NNB
  514. WORK( I, J ) = WORK( CUT+NNB+I, INVD) * WORK( I, J)
  515. END DO
  516. ELSE
  517. DO J = 1, NNB
  518. U01_I_J = WORK(I,J)
  519. U01_IP1_J = WORK(I-1,J)
  520. WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
  521. $ WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
  522. WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
  523. $ WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
  524. END DO
  525. I = I - 1
  526. END IF
  527. I = I - 1
  528. END DO
  529. *
  530. * invD1*L11
  531. *
  532. I = NNB
  533. DO WHILE( I.GE.1 )
  534. IF( IPIV( CUT+I ).GT.0 ) THEN
  535. DO J = 1, NNB
  536. WORK( U11+I, J ) = WORK( CUT+I, INVD)*WORK(U11+I,J)
  537. END DO
  538. ELSE
  539. DO J = 1, NNB
  540. U11_I_J = WORK( U11+I, J )
  541. U11_IP1_J = WORK( U11+I-1, J )
  542. WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  543. $ + WORK(CUT+I,INVD+1) * U11_IP1_J
  544. WORK( U11+I-1, J ) = WORK(CUT+I-1,INVD+1) * U11_I_J
  545. $ + WORK(CUT+I-1,INVD) * U11_IP1_J
  546. END DO
  547. I = I - 1
  548. END IF
  549. I = I - 1
  550. END DO
  551. *
  552. * L11**T * invD1 * L11 -> L11
  553. *
  554. CALL CTRMM( 'L', UPLO, 'T', 'U', NNB, NNB, CONE,
  555. $ A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
  556. $ N+NB+1 )
  557. *
  558. DO I = 1, NNB
  559. DO J = 1, I
  560. A( CUT+I, CUT+J ) = WORK( U11+I, J )
  561. END DO
  562. END DO
  563. *
  564. IF( (CUT+NNB).LT.N ) THEN
  565. *
  566. * L21**T * invD2*L21 -> A( CUT+I, CUT+J )
  567. *
  568. CALL CGEMM( 'T', 'N', NNB, NNB, N-NNB-CUT, CONE,
  569. $ A( CUT+NNB+1, CUT+1 ), LDA, WORK, N+NB+1,
  570. $ CZERO, WORK( U11+1, 1 ), N+NB+1 )
  571. *
  572. * L11 = L11**T * invD1 * L11 + U01**T * invD * U01
  573. *
  574. DO I = 1, NNB
  575. DO J = 1, I
  576. A( CUT+I, CUT+J ) = A( CUT+I, CUT+J )+WORK(U11+I,J)
  577. END DO
  578. END DO
  579. *
  580. * L01 = L22**T * invD2 * L21
  581. *
  582. CALL CTRMM( 'L', UPLO, 'T', 'U', N-NNB-CUT, NNB, CONE,
  583. $ A( CUT+NNB+1, CUT+NNB+1 ), LDA, WORK,
  584. $ N+NB+1 )
  585. *
  586. * Update L21
  587. *
  588. DO I = 1, N-CUT-NNB
  589. DO J = 1, NNB
  590. A( CUT+NNB+I, CUT+J ) = WORK( I, J )
  591. END DO
  592. END DO
  593. *
  594. ELSE
  595. *
  596. * L11 = L11**T * invD1 * L11
  597. *
  598. DO I = 1, NNB
  599. DO J = 1, I
  600. A( CUT+I, CUT+J ) = WORK( U11+I, J )
  601. END DO
  602. END DO
  603. END IF
  604. *
  605. * Next Block
  606. *
  607. CUT = CUT + NNB
  608. *
  609. END DO
  610. *
  611. * Apply PERMUTATIONS P and P**T:
  612. * P * inv(L**T) * inv(D) * inv(L) * P**T.
  613. * Interchange rows and columns I and IPIV(I) in reverse order
  614. * from the formation order of IPIV vector for Lower case.
  615. *
  616. * ( We can use a loop over IPIV with increment -1,
  617. * since the ABS value of IPIV(I) represents the row (column)
  618. * index of the interchange with row (column) i in both 1x1
  619. * and 2x2 pivot cases, i.e. we don't need separate code branches
  620. * for 1x1 and 2x2 pivot cases )
  621. *
  622. DO I = N, 1, -1
  623. IP = ABS( IPIV( I ) )
  624. IF( IP.NE.I ) THEN
  625. IF (I .LT. IP) CALL CSYSWAPR( UPLO, N, A, LDA, I ,IP )
  626. IF (I .GT. IP) CALL CSYSWAPR( UPLO, N, A, LDA, IP ,I )
  627. END IF
  628. END DO
  629. *
  630. END IF
  631. *
  632. RETURN
  633. *
  634. * End of CSYTRI_3X
  635. *
  636. END