You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csyrfs.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443
  1. *> \brief \b CSYRFS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CSYRFS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csyrfs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csyrfs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csyrfs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
  22. * X, LDX, FERR, BERR, WORK, RWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IPIV( * )
  30. * REAL BERR( * ), FERR( * ), RWORK( * )
  31. * COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  32. * $ WORK( * ), X( LDX, * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> CSYRFS improves the computed solution to a system of linear
  42. *> equations when the coefficient matrix is symmetric indefinite, and
  43. *> provides error bounds and backward error estimates for the solution.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] UPLO
  50. *> \verbatim
  51. *> UPLO is CHARACTER*1
  52. *> = 'U': Upper triangle of A is stored;
  53. *> = 'L': Lower triangle of A is stored.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The order of the matrix A. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] NRHS
  63. *> \verbatim
  64. *> NRHS is INTEGER
  65. *> The number of right hand sides, i.e., the number of columns
  66. *> of the matrices B and X. NRHS >= 0.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] A
  70. *> \verbatim
  71. *> A is COMPLEX array, dimension (LDA,N)
  72. *> The symmetric matrix A. If UPLO = 'U', the leading N-by-N
  73. *> upper triangular part of A contains the upper triangular part
  74. *> of the matrix A, and the strictly lower triangular part of A
  75. *> is not referenced. If UPLO = 'L', the leading N-by-N lower
  76. *> triangular part of A contains the lower triangular part of
  77. *> the matrix A, and the strictly upper triangular part of A is
  78. *> not referenced.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] LDA
  82. *> \verbatim
  83. *> LDA is INTEGER
  84. *> The leading dimension of the array A. LDA >= max(1,N).
  85. *> \endverbatim
  86. *>
  87. *> \param[in] AF
  88. *> \verbatim
  89. *> AF is COMPLEX array, dimension (LDAF,N)
  90. *> The factored form of the matrix A. AF contains the block
  91. *> diagonal matrix D and the multipliers used to obtain the
  92. *> factor U or L from the factorization A = U*D*U**T or
  93. *> A = L*D*L**T as computed by CSYTRF.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] LDAF
  97. *> \verbatim
  98. *> LDAF is INTEGER
  99. *> The leading dimension of the array AF. LDAF >= max(1,N).
  100. *> \endverbatim
  101. *>
  102. *> \param[in] IPIV
  103. *> \verbatim
  104. *> IPIV is INTEGER array, dimension (N)
  105. *> Details of the interchanges and the block structure of D
  106. *> as determined by CSYTRF.
  107. *> \endverbatim
  108. *>
  109. *> \param[in] B
  110. *> \verbatim
  111. *> B is COMPLEX array, dimension (LDB,NRHS)
  112. *> The right hand side matrix B.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] LDB
  116. *> \verbatim
  117. *> LDB is INTEGER
  118. *> The leading dimension of the array B. LDB >= max(1,N).
  119. *> \endverbatim
  120. *>
  121. *> \param[in,out] X
  122. *> \verbatim
  123. *> X is COMPLEX array, dimension (LDX,NRHS)
  124. *> On entry, the solution matrix X, as computed by CSYTRS.
  125. *> On exit, the improved solution matrix X.
  126. *> \endverbatim
  127. *>
  128. *> \param[in] LDX
  129. *> \verbatim
  130. *> LDX is INTEGER
  131. *> The leading dimension of the array X. LDX >= max(1,N).
  132. *> \endverbatim
  133. *>
  134. *> \param[out] FERR
  135. *> \verbatim
  136. *> FERR is REAL array, dimension (NRHS)
  137. *> The estimated forward error bound for each solution vector
  138. *> X(j) (the j-th column of the solution matrix X).
  139. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  140. *> is an estimated upper bound for the magnitude of the largest
  141. *> element in (X(j) - XTRUE) divided by the magnitude of the
  142. *> largest element in X(j). The estimate is as reliable as
  143. *> the estimate for RCOND, and is almost always a slight
  144. *> overestimate of the true error.
  145. *> \endverbatim
  146. *>
  147. *> \param[out] BERR
  148. *> \verbatim
  149. *> BERR is REAL array, dimension (NRHS)
  150. *> The componentwise relative backward error of each solution
  151. *> vector X(j) (i.e., the smallest relative change in
  152. *> any element of A or B that makes X(j) an exact solution).
  153. *> \endverbatim
  154. *>
  155. *> \param[out] WORK
  156. *> \verbatim
  157. *> WORK is COMPLEX array, dimension (2*N)
  158. *> \endverbatim
  159. *>
  160. *> \param[out] RWORK
  161. *> \verbatim
  162. *> RWORK is REAL array, dimension (N)
  163. *> \endverbatim
  164. *>
  165. *> \param[out] INFO
  166. *> \verbatim
  167. *> INFO is INTEGER
  168. *> = 0: successful exit
  169. *> < 0: if INFO = -i, the i-th argument had an illegal value
  170. *> \endverbatim
  171. *
  172. *> \par Internal Parameters:
  173. * =========================
  174. *>
  175. *> \verbatim
  176. *> ITMAX is the maximum number of steps of iterative refinement.
  177. *> \endverbatim
  178. *
  179. * Authors:
  180. * ========
  181. *
  182. *> \author Univ. of Tennessee
  183. *> \author Univ. of California Berkeley
  184. *> \author Univ. of Colorado Denver
  185. *> \author NAG Ltd.
  186. *
  187. *> \ingroup complexSYcomputational
  188. *
  189. * =====================================================================
  190. SUBROUTINE CSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
  191. $ X, LDX, FERR, BERR, WORK, RWORK, INFO )
  192. *
  193. * -- LAPACK computational routine --
  194. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  195. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  196. *
  197. * .. Scalar Arguments ..
  198. CHARACTER UPLO
  199. INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
  200. * ..
  201. * .. Array Arguments ..
  202. INTEGER IPIV( * )
  203. REAL BERR( * ), FERR( * ), RWORK( * )
  204. COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  205. $ WORK( * ), X( LDX, * )
  206. * ..
  207. *
  208. * =====================================================================
  209. *
  210. * .. Parameters ..
  211. INTEGER ITMAX
  212. PARAMETER ( ITMAX = 5 )
  213. REAL ZERO
  214. PARAMETER ( ZERO = 0.0E+0 )
  215. COMPLEX ONE
  216. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  217. REAL TWO
  218. PARAMETER ( TWO = 2.0E+0 )
  219. REAL THREE
  220. PARAMETER ( THREE = 3.0E+0 )
  221. * ..
  222. * .. Local Scalars ..
  223. LOGICAL UPPER
  224. INTEGER COUNT, I, J, K, KASE, NZ
  225. REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  226. COMPLEX ZDUM
  227. * ..
  228. * .. Local Arrays ..
  229. INTEGER ISAVE( 3 )
  230. * ..
  231. * .. External Subroutines ..
  232. EXTERNAL CAXPY, CCOPY, CLACN2, CSYMV, CSYTRS, XERBLA
  233. * ..
  234. * .. Intrinsic Functions ..
  235. INTRINSIC ABS, AIMAG, MAX, REAL
  236. * ..
  237. * .. External Functions ..
  238. LOGICAL LSAME
  239. REAL SLAMCH
  240. EXTERNAL LSAME, SLAMCH
  241. * ..
  242. * .. Statement Functions ..
  243. REAL CABS1
  244. * ..
  245. * .. Statement Function definitions ..
  246. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
  247. * ..
  248. * .. Executable Statements ..
  249. *
  250. * Test the input parameters.
  251. *
  252. INFO = 0
  253. UPPER = LSAME( UPLO, 'U' )
  254. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  255. INFO = -1
  256. ELSE IF( N.LT.0 ) THEN
  257. INFO = -2
  258. ELSE IF( NRHS.LT.0 ) THEN
  259. INFO = -3
  260. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  261. INFO = -5
  262. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  263. INFO = -7
  264. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  265. INFO = -10
  266. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  267. INFO = -12
  268. END IF
  269. IF( INFO.NE.0 ) THEN
  270. CALL XERBLA( 'CSYRFS', -INFO )
  271. RETURN
  272. END IF
  273. *
  274. * Quick return if possible
  275. *
  276. IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  277. DO 10 J = 1, NRHS
  278. FERR( J ) = ZERO
  279. BERR( J ) = ZERO
  280. 10 CONTINUE
  281. RETURN
  282. END IF
  283. *
  284. * NZ = maximum number of nonzero elements in each row of A, plus 1
  285. *
  286. NZ = N + 1
  287. EPS = SLAMCH( 'Epsilon' )
  288. SAFMIN = SLAMCH( 'Safe minimum' )
  289. SAFE1 = NZ*SAFMIN
  290. SAFE2 = SAFE1 / EPS
  291. *
  292. * Do for each right hand side
  293. *
  294. DO 140 J = 1, NRHS
  295. *
  296. COUNT = 1
  297. LSTRES = THREE
  298. 20 CONTINUE
  299. *
  300. * Loop until stopping criterion is satisfied.
  301. *
  302. * Compute residual R = B - A * X
  303. *
  304. CALL CCOPY( N, B( 1, J ), 1, WORK, 1 )
  305. CALL CSYMV( UPLO, N, -ONE, A, LDA, X( 1, J ), 1, ONE, WORK, 1 )
  306. *
  307. * Compute componentwise relative backward error from formula
  308. *
  309. * max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  310. *
  311. * where abs(Z) is the componentwise absolute value of the matrix
  312. * or vector Z. If the i-th component of the denominator is less
  313. * than SAFE2, then SAFE1 is added to the i-th components of the
  314. * numerator and denominator before dividing.
  315. *
  316. DO 30 I = 1, N
  317. RWORK( I ) = CABS1( B( I, J ) )
  318. 30 CONTINUE
  319. *
  320. * Compute abs(A)*abs(X) + abs(B).
  321. *
  322. IF( UPPER ) THEN
  323. DO 50 K = 1, N
  324. S = ZERO
  325. XK = CABS1( X( K, J ) )
  326. DO 40 I = 1, K - 1
  327. RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  328. S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  329. 40 CONTINUE
  330. RWORK( K ) = RWORK( K ) + CABS1( A( K, K ) )*XK + S
  331. 50 CONTINUE
  332. ELSE
  333. DO 70 K = 1, N
  334. S = ZERO
  335. XK = CABS1( X( K, J ) )
  336. RWORK( K ) = RWORK( K ) + CABS1( A( K, K ) )*XK
  337. DO 60 I = K + 1, N
  338. RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  339. S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  340. 60 CONTINUE
  341. RWORK( K ) = RWORK( K ) + S
  342. 70 CONTINUE
  343. END IF
  344. S = ZERO
  345. DO 80 I = 1, N
  346. IF( RWORK( I ).GT.SAFE2 ) THEN
  347. S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  348. ELSE
  349. S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  350. $ ( RWORK( I )+SAFE1 ) )
  351. END IF
  352. 80 CONTINUE
  353. BERR( J ) = S
  354. *
  355. * Test stopping criterion. Continue iterating if
  356. * 1) The residual BERR(J) is larger than machine epsilon, and
  357. * 2) BERR(J) decreased by at least a factor of 2 during the
  358. * last iteration, and
  359. * 3) At most ITMAX iterations tried.
  360. *
  361. IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  362. $ COUNT.LE.ITMAX ) THEN
  363. *
  364. * Update solution and try again.
  365. *
  366. CALL CSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  367. CALL CAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
  368. LSTRES = BERR( J )
  369. COUNT = COUNT + 1
  370. GO TO 20
  371. END IF
  372. *
  373. * Bound error from formula
  374. *
  375. * norm(X - XTRUE) / norm(X) .le. FERR =
  376. * norm( abs(inv(A))*
  377. * ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  378. *
  379. * where
  380. * norm(Z) is the magnitude of the largest component of Z
  381. * inv(A) is the inverse of A
  382. * abs(Z) is the componentwise absolute value of the matrix or
  383. * vector Z
  384. * NZ is the maximum number of nonzeros in any row of A, plus 1
  385. * EPS is machine epsilon
  386. *
  387. * The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  388. * is incremented by SAFE1 if the i-th component of
  389. * abs(A)*abs(X) + abs(B) is less than SAFE2.
  390. *
  391. * Use CLACN2 to estimate the infinity-norm of the matrix
  392. * inv(A) * diag(W),
  393. * where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  394. *
  395. DO 90 I = 1, N
  396. IF( RWORK( I ).GT.SAFE2 ) THEN
  397. RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  398. ELSE
  399. RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  400. $ SAFE1
  401. END IF
  402. 90 CONTINUE
  403. *
  404. KASE = 0
  405. 100 CONTINUE
  406. CALL CLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  407. IF( KASE.NE.0 ) THEN
  408. IF( KASE.EQ.1 ) THEN
  409. *
  410. * Multiply by diag(W)*inv(A**T).
  411. *
  412. CALL CSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  413. DO 110 I = 1, N
  414. WORK( I ) = RWORK( I )*WORK( I )
  415. 110 CONTINUE
  416. ELSE IF( KASE.EQ.2 ) THEN
  417. *
  418. * Multiply by inv(A)*diag(W).
  419. *
  420. DO 120 I = 1, N
  421. WORK( I ) = RWORK( I )*WORK( I )
  422. 120 CONTINUE
  423. CALL CSYTRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  424. END IF
  425. GO TO 100
  426. END IF
  427. *
  428. * Normalize error.
  429. *
  430. LSTRES = ZERO
  431. DO 130 I = 1, N
  432. LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  433. 130 CONTINUE
  434. IF( LSTRES.NE.ZERO )
  435. $ FERR( J ) = FERR( J ) / LSTRES
  436. *
  437. 140 CONTINUE
  438. *
  439. RETURN
  440. *
  441. * End of CSYRFS
  442. *
  443. END