You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clatbs.f 31 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992
  1. *> \brief \b CLATBS solves a triangular banded system of equations.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLATBS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clatbs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clatbs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clatbs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
  22. * SCALE, CNORM, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORMIN, TRANS, UPLO
  26. * INTEGER INFO, KD, LDAB, N
  27. * REAL SCALE
  28. * ..
  29. * .. Array Arguments ..
  30. * REAL CNORM( * )
  31. * COMPLEX AB( LDAB, * ), X( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> CLATBS solves one of the triangular systems
  41. *>
  42. *> A * x = s*b, A**T * x = s*b, or A**H * x = s*b,
  43. *>
  44. *> with scaling to prevent overflow, where A is an upper or lower
  45. *> triangular band matrix. Here A**T denotes the transpose of A, x and b
  46. *> are n-element vectors, and s is a scaling factor, usually less than
  47. *> or equal to 1, chosen so that the components of x will be less than
  48. *> the overflow threshold. If the unscaled problem will not cause
  49. *> overflow, the Level 2 BLAS routine CTBSV is called. If the matrix A
  50. *> is singular (A(j,j) = 0 for some j), then s is set to 0 and a
  51. *> non-trivial solution to A*x = 0 is returned.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] UPLO
  58. *> \verbatim
  59. *> UPLO is CHARACTER*1
  60. *> Specifies whether the matrix A is upper or lower triangular.
  61. *> = 'U': Upper triangular
  62. *> = 'L': Lower triangular
  63. *> \endverbatim
  64. *>
  65. *> \param[in] TRANS
  66. *> \verbatim
  67. *> TRANS is CHARACTER*1
  68. *> Specifies the operation applied to A.
  69. *> = 'N': Solve A * x = s*b (No transpose)
  70. *> = 'T': Solve A**T * x = s*b (Transpose)
  71. *> = 'C': Solve A**H * x = s*b (Conjugate transpose)
  72. *> \endverbatim
  73. *>
  74. *> \param[in] DIAG
  75. *> \verbatim
  76. *> DIAG is CHARACTER*1
  77. *> Specifies whether or not the matrix A is unit triangular.
  78. *> = 'N': Non-unit triangular
  79. *> = 'U': Unit triangular
  80. *> \endverbatim
  81. *>
  82. *> \param[in] NORMIN
  83. *> \verbatim
  84. *> NORMIN is CHARACTER*1
  85. *> Specifies whether CNORM has been set or not.
  86. *> = 'Y': CNORM contains the column norms on entry
  87. *> = 'N': CNORM is not set on entry. On exit, the norms will
  88. *> be computed and stored in CNORM.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] N
  92. *> \verbatim
  93. *> N is INTEGER
  94. *> The order of the matrix A. N >= 0.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] KD
  98. *> \verbatim
  99. *> KD is INTEGER
  100. *> The number of subdiagonals or superdiagonals in the
  101. *> triangular matrix A. KD >= 0.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] AB
  105. *> \verbatim
  106. *> AB is COMPLEX array, dimension (LDAB,N)
  107. *> The upper or lower triangular band matrix A, stored in the
  108. *> first KD+1 rows of the array. The j-th column of A is stored
  109. *> in the j-th column of the array AB as follows:
  110. *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  111. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
  112. *> \endverbatim
  113. *>
  114. *> \param[in] LDAB
  115. *> \verbatim
  116. *> LDAB is INTEGER
  117. *> The leading dimension of the array AB. LDAB >= KD+1.
  118. *> \endverbatim
  119. *>
  120. *> \param[in,out] X
  121. *> \verbatim
  122. *> X is COMPLEX array, dimension (N)
  123. *> On entry, the right hand side b of the triangular system.
  124. *> On exit, X is overwritten by the solution vector x.
  125. *> \endverbatim
  126. *>
  127. *> \param[out] SCALE
  128. *> \verbatim
  129. *> SCALE is REAL
  130. *> The scaling factor s for the triangular system
  131. *> A * x = s*b, A**T * x = s*b, or A**H * x = s*b.
  132. *> If SCALE = 0, the matrix A is singular or badly scaled, and
  133. *> the vector x is an exact or approximate solution to A*x = 0.
  134. *> \endverbatim
  135. *>
  136. *> \param[in,out] CNORM
  137. *> \verbatim
  138. *> CNORM is REAL array, dimension (N)
  139. *>
  140. *> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  141. *> contains the norm of the off-diagonal part of the j-th column
  142. *> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
  143. *> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  144. *> must be greater than or equal to the 1-norm.
  145. *>
  146. *> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  147. *> returns the 1-norm of the offdiagonal part of the j-th column
  148. *> of A.
  149. *> \endverbatim
  150. *>
  151. *> \param[out] INFO
  152. *> \verbatim
  153. *> INFO is INTEGER
  154. *> = 0: successful exit
  155. *> < 0: if INFO = -k, the k-th argument had an illegal value
  156. *> \endverbatim
  157. *
  158. * Authors:
  159. * ========
  160. *
  161. *> \author Univ. of Tennessee
  162. *> \author Univ. of California Berkeley
  163. *> \author Univ. of Colorado Denver
  164. *> \author NAG Ltd.
  165. *
  166. *> \ingroup complexOTHERauxiliary
  167. *
  168. *> \par Further Details:
  169. * =====================
  170. *>
  171. *> \verbatim
  172. *>
  173. *> A rough bound on x is computed; if that is less than overflow, CTBSV
  174. *> is called, otherwise, specific code is used which checks for possible
  175. *> overflow or divide-by-zero at every operation.
  176. *>
  177. *> A columnwise scheme is used for solving A*x = b. The basic algorithm
  178. *> if A is lower triangular is
  179. *>
  180. *> x[1:n] := b[1:n]
  181. *> for j = 1, ..., n
  182. *> x(j) := x(j) / A(j,j)
  183. *> x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  184. *> end
  185. *>
  186. *> Define bounds on the components of x after j iterations of the loop:
  187. *> M(j) = bound on x[1:j]
  188. *> G(j) = bound on x[j+1:n]
  189. *> Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  190. *>
  191. *> Then for iteration j+1 we have
  192. *> M(j+1) <= G(j) / | A(j+1,j+1) |
  193. *> G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  194. *> <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  195. *>
  196. *> where CNORM(j+1) is greater than or equal to the infinity-norm of
  197. *> column j+1 of A, not counting the diagonal. Hence
  198. *>
  199. *> G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  200. *> 1<=i<=j
  201. *> and
  202. *>
  203. *> |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  204. *> 1<=i< j
  205. *>
  206. *> Since |x(j)| <= M(j), we use the Level 2 BLAS routine CTBSV if the
  207. *> reciprocal of the largest M(j), j=1,..,n, is larger than
  208. *> max(underflow, 1/overflow).
  209. *>
  210. *> The bound on x(j) is also used to determine when a step in the
  211. *> columnwise method can be performed without fear of overflow. If
  212. *> the computed bound is greater than a large constant, x is scaled to
  213. *> prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  214. *> 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  215. *>
  216. *> Similarly, a row-wise scheme is used to solve A**T *x = b or
  217. *> A**H *x = b. The basic algorithm for A upper triangular is
  218. *>
  219. *> for j = 1, ..., n
  220. *> x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
  221. *> end
  222. *>
  223. *> We simultaneously compute two bounds
  224. *> G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
  225. *> M(j) = bound on x(i), 1<=i<=j
  226. *>
  227. *> The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  228. *> add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  229. *> Then the bound on x(j) is
  230. *>
  231. *> M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  232. *>
  233. *> <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  234. *> 1<=i<=j
  235. *>
  236. *> and we can safely call CTBSV if 1/M(n) and 1/G(n) are both greater
  237. *> than max(underflow, 1/overflow).
  238. *> \endverbatim
  239. *>
  240. * =====================================================================
  241. SUBROUTINE CLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
  242. $ SCALE, CNORM, INFO )
  243. *
  244. * -- LAPACK auxiliary routine --
  245. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  246. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  247. *
  248. * .. Scalar Arguments ..
  249. CHARACTER DIAG, NORMIN, TRANS, UPLO
  250. INTEGER INFO, KD, LDAB, N
  251. REAL SCALE
  252. * ..
  253. * .. Array Arguments ..
  254. REAL CNORM( * )
  255. COMPLEX AB( LDAB, * ), X( * )
  256. * ..
  257. *
  258. * =====================================================================
  259. *
  260. * .. Parameters ..
  261. REAL ZERO, HALF, ONE, TWO
  262. PARAMETER ( ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0,
  263. $ TWO = 2.0E+0 )
  264. * ..
  265. * .. Local Scalars ..
  266. LOGICAL NOTRAN, NOUNIT, UPPER
  267. INTEGER I, IMAX, J, JFIRST, JINC, JLAST, JLEN, MAIND
  268. REAL BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
  269. $ XBND, XJ, XMAX
  270. COMPLEX CSUMJ, TJJS, USCAL, ZDUM
  271. * ..
  272. * .. External Functions ..
  273. LOGICAL LSAME
  274. INTEGER ICAMAX, ISAMAX
  275. REAL SCASUM, SLAMCH
  276. COMPLEX CDOTC, CDOTU, CLADIV
  277. EXTERNAL LSAME, ICAMAX, ISAMAX, SCASUM, SLAMCH, CDOTC,
  278. $ CDOTU, CLADIV
  279. * ..
  280. * .. External Subroutines ..
  281. EXTERNAL CAXPY, CSSCAL, CTBSV, SSCAL, XERBLA
  282. * ..
  283. * .. Intrinsic Functions ..
  284. INTRINSIC ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL
  285. * ..
  286. * .. Statement Functions ..
  287. REAL CABS1, CABS2
  288. * ..
  289. * .. Statement Function definitions ..
  290. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
  291. CABS2( ZDUM ) = ABS( REAL( ZDUM ) / 2. ) +
  292. $ ABS( AIMAG( ZDUM ) / 2. )
  293. * ..
  294. * .. Executable Statements ..
  295. *
  296. INFO = 0
  297. UPPER = LSAME( UPLO, 'U' )
  298. NOTRAN = LSAME( TRANS, 'N' )
  299. NOUNIT = LSAME( DIAG, 'N' )
  300. *
  301. * Test the input parameters.
  302. *
  303. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  304. INFO = -1
  305. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  306. $ LSAME( TRANS, 'C' ) ) THEN
  307. INFO = -2
  308. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  309. INFO = -3
  310. ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  311. $ LSAME( NORMIN, 'N' ) ) THEN
  312. INFO = -4
  313. ELSE IF( N.LT.0 ) THEN
  314. INFO = -5
  315. ELSE IF( KD.LT.0 ) THEN
  316. INFO = -6
  317. ELSE IF( LDAB.LT.KD+1 ) THEN
  318. INFO = -8
  319. END IF
  320. IF( INFO.NE.0 ) THEN
  321. CALL XERBLA( 'CLATBS', -INFO )
  322. RETURN
  323. END IF
  324. *
  325. * Quick return if possible
  326. *
  327. SCALE = ONE
  328. IF( N.EQ.0 )
  329. $ RETURN
  330. *
  331. * Determine machine dependent parameters to control overflow.
  332. *
  333. SMLNUM = SLAMCH( 'Safe minimum' ) / SLAMCH( 'Precision' )
  334. BIGNUM = ONE / SMLNUM
  335. *
  336. IF( LSAME( NORMIN, 'N' ) ) THEN
  337. *
  338. * Compute the 1-norm of each column, not including the diagonal.
  339. *
  340. IF( UPPER ) THEN
  341. *
  342. * A is upper triangular.
  343. *
  344. DO 10 J = 1, N
  345. JLEN = MIN( KD, J-1 )
  346. CNORM( J ) = SCASUM( JLEN, AB( KD+1-JLEN, J ), 1 )
  347. 10 CONTINUE
  348. ELSE
  349. *
  350. * A is lower triangular.
  351. *
  352. DO 20 J = 1, N
  353. JLEN = MIN( KD, N-J )
  354. IF( JLEN.GT.0 ) THEN
  355. CNORM( J ) = SCASUM( JLEN, AB( 2, J ), 1 )
  356. ELSE
  357. CNORM( J ) = ZERO
  358. END IF
  359. 20 CONTINUE
  360. END IF
  361. END IF
  362. *
  363. * Scale the column norms by TSCAL if the maximum element in CNORM is
  364. * greater than BIGNUM/2.
  365. *
  366. IMAX = ISAMAX( N, CNORM, 1 )
  367. TMAX = CNORM( IMAX )
  368. IF( TMAX.LE.BIGNUM*HALF ) THEN
  369. TSCAL = ONE
  370. ELSE
  371. TSCAL = HALF / ( SMLNUM*TMAX )
  372. CALL SSCAL( N, TSCAL, CNORM, 1 )
  373. END IF
  374. *
  375. * Compute a bound on the computed solution vector to see if the
  376. * Level 2 BLAS routine CTBSV can be used.
  377. *
  378. XMAX = ZERO
  379. DO 30 J = 1, N
  380. XMAX = MAX( XMAX, CABS2( X( J ) ) )
  381. 30 CONTINUE
  382. XBND = XMAX
  383. IF( NOTRAN ) THEN
  384. *
  385. * Compute the growth in A * x = b.
  386. *
  387. IF( UPPER ) THEN
  388. JFIRST = N
  389. JLAST = 1
  390. JINC = -1
  391. MAIND = KD + 1
  392. ELSE
  393. JFIRST = 1
  394. JLAST = N
  395. JINC = 1
  396. MAIND = 1
  397. END IF
  398. *
  399. IF( TSCAL.NE.ONE ) THEN
  400. GROW = ZERO
  401. GO TO 60
  402. END IF
  403. *
  404. IF( NOUNIT ) THEN
  405. *
  406. * A is non-unit triangular.
  407. *
  408. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  409. * Initially, G(0) = max{x(i), i=1,...,n}.
  410. *
  411. GROW = HALF / MAX( XBND, SMLNUM )
  412. XBND = GROW
  413. DO 40 J = JFIRST, JLAST, JINC
  414. *
  415. * Exit the loop if the growth factor is too small.
  416. *
  417. IF( GROW.LE.SMLNUM )
  418. $ GO TO 60
  419. *
  420. TJJS = AB( MAIND, J )
  421. TJJ = CABS1( TJJS )
  422. *
  423. IF( TJJ.GE.SMLNUM ) THEN
  424. *
  425. * M(j) = G(j-1) / abs(A(j,j))
  426. *
  427. XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  428. ELSE
  429. *
  430. * M(j) could overflow, set XBND to 0.
  431. *
  432. XBND = ZERO
  433. END IF
  434. *
  435. IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  436. *
  437. * G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  438. *
  439. GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  440. ELSE
  441. *
  442. * G(j) could overflow, set GROW to 0.
  443. *
  444. GROW = ZERO
  445. END IF
  446. 40 CONTINUE
  447. GROW = XBND
  448. ELSE
  449. *
  450. * A is unit triangular.
  451. *
  452. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  453. *
  454. GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  455. DO 50 J = JFIRST, JLAST, JINC
  456. *
  457. * Exit the loop if the growth factor is too small.
  458. *
  459. IF( GROW.LE.SMLNUM )
  460. $ GO TO 60
  461. *
  462. * G(j) = G(j-1)*( 1 + CNORM(j) )
  463. *
  464. GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  465. 50 CONTINUE
  466. END IF
  467. 60 CONTINUE
  468. *
  469. ELSE
  470. *
  471. * Compute the growth in A**T * x = b or A**H * x = b.
  472. *
  473. IF( UPPER ) THEN
  474. JFIRST = 1
  475. JLAST = N
  476. JINC = 1
  477. MAIND = KD + 1
  478. ELSE
  479. JFIRST = N
  480. JLAST = 1
  481. JINC = -1
  482. MAIND = 1
  483. END IF
  484. *
  485. IF( TSCAL.NE.ONE ) THEN
  486. GROW = ZERO
  487. GO TO 90
  488. END IF
  489. *
  490. IF( NOUNIT ) THEN
  491. *
  492. * A is non-unit triangular.
  493. *
  494. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  495. * Initially, M(0) = max{x(i), i=1,...,n}.
  496. *
  497. GROW = HALF / MAX( XBND, SMLNUM )
  498. XBND = GROW
  499. DO 70 J = JFIRST, JLAST, JINC
  500. *
  501. * Exit the loop if the growth factor is too small.
  502. *
  503. IF( GROW.LE.SMLNUM )
  504. $ GO TO 90
  505. *
  506. * G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  507. *
  508. XJ = ONE + CNORM( J )
  509. GROW = MIN( GROW, XBND / XJ )
  510. *
  511. TJJS = AB( MAIND, J )
  512. TJJ = CABS1( TJJS )
  513. *
  514. IF( TJJ.GE.SMLNUM ) THEN
  515. *
  516. * M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  517. *
  518. IF( XJ.GT.TJJ )
  519. $ XBND = XBND*( TJJ / XJ )
  520. ELSE
  521. *
  522. * M(j) could overflow, set XBND to 0.
  523. *
  524. XBND = ZERO
  525. END IF
  526. 70 CONTINUE
  527. GROW = MIN( GROW, XBND )
  528. ELSE
  529. *
  530. * A is unit triangular.
  531. *
  532. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  533. *
  534. GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  535. DO 80 J = JFIRST, JLAST, JINC
  536. *
  537. * Exit the loop if the growth factor is too small.
  538. *
  539. IF( GROW.LE.SMLNUM )
  540. $ GO TO 90
  541. *
  542. * G(j) = ( 1 + CNORM(j) )*G(j-1)
  543. *
  544. XJ = ONE + CNORM( J )
  545. GROW = GROW / XJ
  546. 80 CONTINUE
  547. END IF
  548. 90 CONTINUE
  549. END IF
  550. *
  551. IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  552. *
  553. * Use the Level 2 BLAS solve if the reciprocal of the bound on
  554. * elements of X is not too small.
  555. *
  556. CALL CTBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, X, 1 )
  557. ELSE
  558. *
  559. * Use a Level 1 BLAS solve, scaling intermediate results.
  560. *
  561. IF( XMAX.GT.BIGNUM*HALF ) THEN
  562. *
  563. * Scale X so that its components are less than or equal to
  564. * BIGNUM in absolute value.
  565. *
  566. SCALE = ( BIGNUM*HALF ) / XMAX
  567. CALL CSSCAL( N, SCALE, X, 1 )
  568. XMAX = BIGNUM
  569. ELSE
  570. XMAX = XMAX*TWO
  571. END IF
  572. *
  573. IF( NOTRAN ) THEN
  574. *
  575. * Solve A * x = b
  576. *
  577. DO 110 J = JFIRST, JLAST, JINC
  578. *
  579. * Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  580. *
  581. XJ = CABS1( X( J ) )
  582. IF( NOUNIT ) THEN
  583. TJJS = AB( MAIND, J )*TSCAL
  584. ELSE
  585. TJJS = TSCAL
  586. IF( TSCAL.EQ.ONE )
  587. $ GO TO 105
  588. END IF
  589. TJJ = CABS1( TJJS )
  590. IF( TJJ.GT.SMLNUM ) THEN
  591. *
  592. * abs(A(j,j)) > SMLNUM:
  593. *
  594. IF( TJJ.LT.ONE ) THEN
  595. IF( XJ.GT.TJJ*BIGNUM ) THEN
  596. *
  597. * Scale x by 1/b(j).
  598. *
  599. REC = ONE / XJ
  600. CALL CSSCAL( N, REC, X, 1 )
  601. SCALE = SCALE*REC
  602. XMAX = XMAX*REC
  603. END IF
  604. END IF
  605. X( J ) = CLADIV( X( J ), TJJS )
  606. XJ = CABS1( X( J ) )
  607. ELSE IF( TJJ.GT.ZERO ) THEN
  608. *
  609. * 0 < abs(A(j,j)) <= SMLNUM:
  610. *
  611. IF( XJ.GT.TJJ*BIGNUM ) THEN
  612. *
  613. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  614. * to avoid overflow when dividing by A(j,j).
  615. *
  616. REC = ( TJJ*BIGNUM ) / XJ
  617. IF( CNORM( J ).GT.ONE ) THEN
  618. *
  619. * Scale by 1/CNORM(j) to avoid overflow when
  620. * multiplying x(j) times column j.
  621. *
  622. REC = REC / CNORM( J )
  623. END IF
  624. CALL CSSCAL( N, REC, X, 1 )
  625. SCALE = SCALE*REC
  626. XMAX = XMAX*REC
  627. END IF
  628. X( J ) = CLADIV( X( J ), TJJS )
  629. XJ = CABS1( X( J ) )
  630. ELSE
  631. *
  632. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  633. * scale = 0, and compute a solution to A*x = 0.
  634. *
  635. DO 100 I = 1, N
  636. X( I ) = ZERO
  637. 100 CONTINUE
  638. X( J ) = ONE
  639. XJ = ONE
  640. SCALE = ZERO
  641. XMAX = ZERO
  642. END IF
  643. 105 CONTINUE
  644. *
  645. * Scale x if necessary to avoid overflow when adding a
  646. * multiple of column j of A.
  647. *
  648. IF( XJ.GT.ONE ) THEN
  649. REC = ONE / XJ
  650. IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  651. *
  652. * Scale x by 1/(2*abs(x(j))).
  653. *
  654. REC = REC*HALF
  655. CALL CSSCAL( N, REC, X, 1 )
  656. SCALE = SCALE*REC
  657. END IF
  658. ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  659. *
  660. * Scale x by 1/2.
  661. *
  662. CALL CSSCAL( N, HALF, X, 1 )
  663. SCALE = SCALE*HALF
  664. END IF
  665. *
  666. IF( UPPER ) THEN
  667. IF( J.GT.1 ) THEN
  668. *
  669. * Compute the update
  670. * x(max(1,j-kd):j-1) := x(max(1,j-kd):j-1) -
  671. * x(j)* A(max(1,j-kd):j-1,j)
  672. *
  673. JLEN = MIN( KD, J-1 )
  674. CALL CAXPY( JLEN, -X( J )*TSCAL,
  675. $ AB( KD+1-JLEN, J ), 1, X( J-JLEN ), 1 )
  676. I = ICAMAX( J-1, X, 1 )
  677. XMAX = CABS1( X( I ) )
  678. END IF
  679. ELSE IF( J.LT.N ) THEN
  680. *
  681. * Compute the update
  682. * x(j+1:min(j+kd,n)) := x(j+1:min(j+kd,n)) -
  683. * x(j) * A(j+1:min(j+kd,n),j)
  684. *
  685. JLEN = MIN( KD, N-J )
  686. IF( JLEN.GT.0 )
  687. $ CALL CAXPY( JLEN, -X( J )*TSCAL, AB( 2, J ), 1,
  688. $ X( J+1 ), 1 )
  689. I = J + ICAMAX( N-J, X( J+1 ), 1 )
  690. XMAX = CABS1( X( I ) )
  691. END IF
  692. 110 CONTINUE
  693. *
  694. ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  695. *
  696. * Solve A**T * x = b
  697. *
  698. DO 150 J = JFIRST, JLAST, JINC
  699. *
  700. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  701. * k<>j
  702. *
  703. XJ = CABS1( X( J ) )
  704. USCAL = TSCAL
  705. REC = ONE / MAX( XMAX, ONE )
  706. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  707. *
  708. * If x(j) could overflow, scale x by 1/(2*XMAX).
  709. *
  710. REC = REC*HALF
  711. IF( NOUNIT ) THEN
  712. TJJS = AB( MAIND, J )*TSCAL
  713. ELSE
  714. TJJS = TSCAL
  715. END IF
  716. TJJ = CABS1( TJJS )
  717. IF( TJJ.GT.ONE ) THEN
  718. *
  719. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  720. *
  721. REC = MIN( ONE, REC*TJJ )
  722. USCAL = CLADIV( USCAL, TJJS )
  723. END IF
  724. IF( REC.LT.ONE ) THEN
  725. CALL CSSCAL( N, REC, X, 1 )
  726. SCALE = SCALE*REC
  727. XMAX = XMAX*REC
  728. END IF
  729. END IF
  730. *
  731. CSUMJ = ZERO
  732. IF( USCAL.EQ.CMPLX( ONE ) ) THEN
  733. *
  734. * If the scaling needed for A in the dot product is 1,
  735. * call CDOTU to perform the dot product.
  736. *
  737. IF( UPPER ) THEN
  738. JLEN = MIN( KD, J-1 )
  739. CSUMJ = CDOTU( JLEN, AB( KD+1-JLEN, J ), 1,
  740. $ X( J-JLEN ), 1 )
  741. ELSE
  742. JLEN = MIN( KD, N-J )
  743. IF( JLEN.GT.1 )
  744. $ CSUMJ = CDOTU( JLEN, AB( 2, J ), 1, X( J+1 ),
  745. $ 1 )
  746. END IF
  747. ELSE
  748. *
  749. * Otherwise, use in-line code for the dot product.
  750. *
  751. IF( UPPER ) THEN
  752. JLEN = MIN( KD, J-1 )
  753. DO 120 I = 1, JLEN
  754. CSUMJ = CSUMJ + ( AB( KD+I-JLEN, J )*USCAL )*
  755. $ X( J-JLEN-1+I )
  756. 120 CONTINUE
  757. ELSE
  758. JLEN = MIN( KD, N-J )
  759. DO 130 I = 1, JLEN
  760. CSUMJ = CSUMJ + ( AB( I+1, J )*USCAL )*X( J+I )
  761. 130 CONTINUE
  762. END IF
  763. END IF
  764. *
  765. IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
  766. *
  767. * Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  768. * was not used to scale the dotproduct.
  769. *
  770. X( J ) = X( J ) - CSUMJ
  771. XJ = CABS1( X( J ) )
  772. IF( NOUNIT ) THEN
  773. *
  774. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  775. *
  776. TJJS = AB( MAIND, J )*TSCAL
  777. ELSE
  778. TJJS = TSCAL
  779. IF( TSCAL.EQ.ONE )
  780. $ GO TO 145
  781. END IF
  782. TJJ = CABS1( TJJS )
  783. IF( TJJ.GT.SMLNUM ) THEN
  784. *
  785. * abs(A(j,j)) > SMLNUM:
  786. *
  787. IF( TJJ.LT.ONE ) THEN
  788. IF( XJ.GT.TJJ*BIGNUM ) THEN
  789. *
  790. * Scale X by 1/abs(x(j)).
  791. *
  792. REC = ONE / XJ
  793. CALL CSSCAL( N, REC, X, 1 )
  794. SCALE = SCALE*REC
  795. XMAX = XMAX*REC
  796. END IF
  797. END IF
  798. X( J ) = CLADIV( X( J ), TJJS )
  799. ELSE IF( TJJ.GT.ZERO ) THEN
  800. *
  801. * 0 < abs(A(j,j)) <= SMLNUM:
  802. *
  803. IF( XJ.GT.TJJ*BIGNUM ) THEN
  804. *
  805. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  806. *
  807. REC = ( TJJ*BIGNUM ) / XJ
  808. CALL CSSCAL( N, REC, X, 1 )
  809. SCALE = SCALE*REC
  810. XMAX = XMAX*REC
  811. END IF
  812. X( J ) = CLADIV( X( J ), TJJS )
  813. ELSE
  814. *
  815. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  816. * scale = 0 and compute a solution to A**T *x = 0.
  817. *
  818. DO 140 I = 1, N
  819. X( I ) = ZERO
  820. 140 CONTINUE
  821. X( J ) = ONE
  822. SCALE = ZERO
  823. XMAX = ZERO
  824. END IF
  825. 145 CONTINUE
  826. ELSE
  827. *
  828. * Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  829. * product has already been divided by 1/A(j,j).
  830. *
  831. X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
  832. END IF
  833. XMAX = MAX( XMAX, CABS1( X( J ) ) )
  834. 150 CONTINUE
  835. *
  836. ELSE
  837. *
  838. * Solve A**H * x = b
  839. *
  840. DO 190 J = JFIRST, JLAST, JINC
  841. *
  842. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  843. * k<>j
  844. *
  845. XJ = CABS1( X( J ) )
  846. USCAL = TSCAL
  847. REC = ONE / MAX( XMAX, ONE )
  848. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  849. *
  850. * If x(j) could overflow, scale x by 1/(2*XMAX).
  851. *
  852. REC = REC*HALF
  853. IF( NOUNIT ) THEN
  854. TJJS = CONJG( AB( MAIND, J ) )*TSCAL
  855. ELSE
  856. TJJS = TSCAL
  857. END IF
  858. TJJ = CABS1( TJJS )
  859. IF( TJJ.GT.ONE ) THEN
  860. *
  861. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  862. *
  863. REC = MIN( ONE, REC*TJJ )
  864. USCAL = CLADIV( USCAL, TJJS )
  865. END IF
  866. IF( REC.LT.ONE ) THEN
  867. CALL CSSCAL( N, REC, X, 1 )
  868. SCALE = SCALE*REC
  869. XMAX = XMAX*REC
  870. END IF
  871. END IF
  872. *
  873. CSUMJ = ZERO
  874. IF( USCAL.EQ.CMPLX( ONE ) ) THEN
  875. *
  876. * If the scaling needed for A in the dot product is 1,
  877. * call CDOTC to perform the dot product.
  878. *
  879. IF( UPPER ) THEN
  880. JLEN = MIN( KD, J-1 )
  881. CSUMJ = CDOTC( JLEN, AB( KD+1-JLEN, J ), 1,
  882. $ X( J-JLEN ), 1 )
  883. ELSE
  884. JLEN = MIN( KD, N-J )
  885. IF( JLEN.GT.1 )
  886. $ CSUMJ = CDOTC( JLEN, AB( 2, J ), 1, X( J+1 ),
  887. $ 1 )
  888. END IF
  889. ELSE
  890. *
  891. * Otherwise, use in-line code for the dot product.
  892. *
  893. IF( UPPER ) THEN
  894. JLEN = MIN( KD, J-1 )
  895. DO 160 I = 1, JLEN
  896. CSUMJ = CSUMJ + ( CONJG( AB( KD+I-JLEN, J ) )*
  897. $ USCAL )*X( J-JLEN-1+I )
  898. 160 CONTINUE
  899. ELSE
  900. JLEN = MIN( KD, N-J )
  901. DO 170 I = 1, JLEN
  902. CSUMJ = CSUMJ + ( CONJG( AB( I+1, J ) )*USCAL )*
  903. $ X( J+I )
  904. 170 CONTINUE
  905. END IF
  906. END IF
  907. *
  908. IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
  909. *
  910. * Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  911. * was not used to scale the dotproduct.
  912. *
  913. X( J ) = X( J ) - CSUMJ
  914. XJ = CABS1( X( J ) )
  915. IF( NOUNIT ) THEN
  916. *
  917. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  918. *
  919. TJJS = CONJG( AB( MAIND, J ) )*TSCAL
  920. ELSE
  921. TJJS = TSCAL
  922. IF( TSCAL.EQ.ONE )
  923. $ GO TO 185
  924. END IF
  925. TJJ = CABS1( TJJS )
  926. IF( TJJ.GT.SMLNUM ) THEN
  927. *
  928. * abs(A(j,j)) > SMLNUM:
  929. *
  930. IF( TJJ.LT.ONE ) THEN
  931. IF( XJ.GT.TJJ*BIGNUM ) THEN
  932. *
  933. * Scale X by 1/abs(x(j)).
  934. *
  935. REC = ONE / XJ
  936. CALL CSSCAL( N, REC, X, 1 )
  937. SCALE = SCALE*REC
  938. XMAX = XMAX*REC
  939. END IF
  940. END IF
  941. X( J ) = CLADIV( X( J ), TJJS )
  942. ELSE IF( TJJ.GT.ZERO ) THEN
  943. *
  944. * 0 < abs(A(j,j)) <= SMLNUM:
  945. *
  946. IF( XJ.GT.TJJ*BIGNUM ) THEN
  947. *
  948. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  949. *
  950. REC = ( TJJ*BIGNUM ) / XJ
  951. CALL CSSCAL( N, REC, X, 1 )
  952. SCALE = SCALE*REC
  953. XMAX = XMAX*REC
  954. END IF
  955. X( J ) = CLADIV( X( J ), TJJS )
  956. ELSE
  957. *
  958. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  959. * scale = 0 and compute a solution to A**H *x = 0.
  960. *
  961. DO 180 I = 1, N
  962. X( I ) = ZERO
  963. 180 CONTINUE
  964. X( J ) = ONE
  965. SCALE = ZERO
  966. XMAX = ZERO
  967. END IF
  968. 185 CONTINUE
  969. ELSE
  970. *
  971. * Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  972. * product has already been divided by 1/A(j,j).
  973. *
  974. X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
  975. END IF
  976. XMAX = MAX( XMAX, CABS1( X( J ) ) )
  977. 190 CONTINUE
  978. END IF
  979. SCALE = SCALE / TSCAL
  980. END IF
  981. *
  982. * Scale the column norms by 1/TSCAL for return.
  983. *
  984. IF( TSCAL.NE.ONE ) THEN
  985. CALL SSCAL( N, ONE / TSCAL, CNORM, 1 )
  986. END IF
  987. *
  988. RETURN
  989. *
  990. * End of CLATBS
  991. *
  992. END