You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cla_syrcond_c.f 8.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327
  1. *> \brief \b CLA_SYRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for symmetric indefinite matrices.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLA_SYRCOND_C + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_syrcond_c.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_syrcond_c.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_syrcond_c.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION CLA_SYRCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV, C,
  22. * CAPPLY, INFO, WORK, RWORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * LOGICAL CAPPLY
  27. * INTEGER N, LDA, LDAF, INFO
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER IPIV( * )
  31. * COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * )
  32. * REAL C( * ), RWORK( * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> CLA_SYRCOND_C Computes the infinity norm condition number of
  42. *> op(A) * inv(diag(C)) where C is a REAL vector.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] UPLO
  49. *> \verbatim
  50. *> UPLO is CHARACTER*1
  51. *> = 'U': Upper triangle of A is stored;
  52. *> = 'L': Lower triangle of A is stored.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The number of linear equations, i.e., the order of the
  59. *> matrix A. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] A
  63. *> \verbatim
  64. *> A is COMPLEX array, dimension (LDA,N)
  65. *> On entry, the N-by-N matrix A
  66. *> \endverbatim
  67. *>
  68. *> \param[in] LDA
  69. *> \verbatim
  70. *> LDA is INTEGER
  71. *> The leading dimension of the array A. LDA >= max(1,N).
  72. *> \endverbatim
  73. *>
  74. *> \param[in] AF
  75. *> \verbatim
  76. *> AF is COMPLEX array, dimension (LDAF,N)
  77. *> The block diagonal matrix D and the multipliers used to
  78. *> obtain the factor U or L as computed by CSYTRF.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] LDAF
  82. *> \verbatim
  83. *> LDAF is INTEGER
  84. *> The leading dimension of the array AF. LDAF >= max(1,N).
  85. *> \endverbatim
  86. *>
  87. *> \param[in] IPIV
  88. *> \verbatim
  89. *> IPIV is INTEGER array, dimension (N)
  90. *> Details of the interchanges and the block structure of D
  91. *> as determined by CSYTRF.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] C
  95. *> \verbatim
  96. *> C is REAL array, dimension (N)
  97. *> The vector C in the formula op(A) * inv(diag(C)).
  98. *> \endverbatim
  99. *>
  100. *> \param[in] CAPPLY
  101. *> \verbatim
  102. *> CAPPLY is LOGICAL
  103. *> If .TRUE. then access the vector C in the formula above.
  104. *> \endverbatim
  105. *>
  106. *> \param[out] INFO
  107. *> \verbatim
  108. *> INFO is INTEGER
  109. *> = 0: Successful exit.
  110. *> i > 0: The ith argument is invalid.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] WORK
  114. *> \verbatim
  115. *> WORK is COMPLEX array, dimension (2*N).
  116. *> Workspace.
  117. *> \endverbatim
  118. *>
  119. *> \param[out] RWORK
  120. *> \verbatim
  121. *> RWORK is REAL array, dimension (N).
  122. *> Workspace.
  123. *> \endverbatim
  124. *
  125. * Authors:
  126. * ========
  127. *
  128. *> \author Univ. of Tennessee
  129. *> \author Univ. of California Berkeley
  130. *> \author Univ. of Colorado Denver
  131. *> \author NAG Ltd.
  132. *
  133. *> \ingroup complexSYcomputational
  134. *
  135. * =====================================================================
  136. REAL FUNCTION CLA_SYRCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV, C,
  137. $ CAPPLY, INFO, WORK, RWORK )
  138. *
  139. * -- LAPACK computational routine --
  140. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  141. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  142. *
  143. * .. Scalar Arguments ..
  144. CHARACTER UPLO
  145. LOGICAL CAPPLY
  146. INTEGER N, LDA, LDAF, INFO
  147. * ..
  148. * .. Array Arguments ..
  149. INTEGER IPIV( * )
  150. COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * )
  151. REAL C( * ), RWORK( * )
  152. * ..
  153. *
  154. * =====================================================================
  155. *
  156. * .. Local Scalars ..
  157. INTEGER KASE
  158. REAL AINVNM, ANORM, TMP
  159. INTEGER I, J
  160. LOGICAL UP, UPPER
  161. COMPLEX ZDUM
  162. * ..
  163. * .. Local Arrays ..
  164. INTEGER ISAVE( 3 )
  165. * ..
  166. * .. External Functions ..
  167. LOGICAL LSAME
  168. EXTERNAL LSAME
  169. * ..
  170. * .. External Subroutines ..
  171. EXTERNAL CLACN2, CSYTRS, XERBLA
  172. * ..
  173. * .. Intrinsic Functions ..
  174. INTRINSIC ABS, MAX
  175. * ..
  176. * .. Statement Functions ..
  177. REAL CABS1
  178. * ..
  179. * .. Statement Function Definitions ..
  180. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
  181. * ..
  182. * .. Executable Statements ..
  183. *
  184. CLA_SYRCOND_C = 0.0E+0
  185. *
  186. INFO = 0
  187. UPPER = LSAME( UPLO, 'U' )
  188. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  189. INFO = -1
  190. ELSE IF( N.LT.0 ) THEN
  191. INFO = -2
  192. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  193. INFO = -4
  194. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  195. INFO = -6
  196. END IF
  197. IF( INFO.NE.0 ) THEN
  198. CALL XERBLA( 'CLA_SYRCOND_C', -INFO )
  199. RETURN
  200. END IF
  201. UP = .FALSE.
  202. IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
  203. *
  204. * Compute norm of op(A)*op2(C).
  205. *
  206. ANORM = 0.0E+0
  207. IF ( UP ) THEN
  208. DO I = 1, N
  209. TMP = 0.0E+0
  210. IF ( CAPPLY ) THEN
  211. DO J = 1, I
  212. TMP = TMP + CABS1( A( J, I ) ) / C( J )
  213. END DO
  214. DO J = I+1, N
  215. TMP = TMP + CABS1( A( I, J ) ) / C( J )
  216. END DO
  217. ELSE
  218. DO J = 1, I
  219. TMP = TMP + CABS1( A( J, I ) )
  220. END DO
  221. DO J = I+1, N
  222. TMP = TMP + CABS1( A( I, J ) )
  223. END DO
  224. END IF
  225. RWORK( I ) = TMP
  226. ANORM = MAX( ANORM, TMP )
  227. END DO
  228. ELSE
  229. DO I = 1, N
  230. TMP = 0.0E+0
  231. IF ( CAPPLY ) THEN
  232. DO J = 1, I
  233. TMP = TMP + CABS1( A( I, J ) ) / C( J )
  234. END DO
  235. DO J = I+1, N
  236. TMP = TMP + CABS1( A( J, I ) ) / C( J )
  237. END DO
  238. ELSE
  239. DO J = 1, I
  240. TMP = TMP + CABS1( A( I, J ) )
  241. END DO
  242. DO J = I+1, N
  243. TMP = TMP + CABS1( A( J, I ) )
  244. END DO
  245. END IF
  246. RWORK( I ) = TMP
  247. ANORM = MAX( ANORM, TMP )
  248. END DO
  249. END IF
  250. *
  251. * Quick return if possible.
  252. *
  253. IF( N.EQ.0 ) THEN
  254. CLA_SYRCOND_C = 1.0E+0
  255. RETURN
  256. ELSE IF( ANORM .EQ. 0.0E+0 ) THEN
  257. RETURN
  258. END IF
  259. *
  260. * Estimate the norm of inv(op(A)).
  261. *
  262. AINVNM = 0.0E+0
  263. *
  264. KASE = 0
  265. 10 CONTINUE
  266. CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  267. IF( KASE.NE.0 ) THEN
  268. IF( KASE.EQ.2 ) THEN
  269. *
  270. * Multiply by R.
  271. *
  272. DO I = 1, N
  273. WORK( I ) = WORK( I ) * RWORK( I )
  274. END DO
  275. *
  276. IF ( UP ) THEN
  277. CALL CSYTRS( 'U', N, 1, AF, LDAF, IPIV,
  278. $ WORK, N, INFO )
  279. ELSE
  280. CALL CSYTRS( 'L', N, 1, AF, LDAF, IPIV,
  281. $ WORK, N, INFO )
  282. ENDIF
  283. *
  284. * Multiply by inv(C).
  285. *
  286. IF ( CAPPLY ) THEN
  287. DO I = 1, N
  288. WORK( I ) = WORK( I ) * C( I )
  289. END DO
  290. END IF
  291. ELSE
  292. *
  293. * Multiply by inv(C**T).
  294. *
  295. IF ( CAPPLY ) THEN
  296. DO I = 1, N
  297. WORK( I ) = WORK( I ) * C( I )
  298. END DO
  299. END IF
  300. *
  301. IF ( UP ) THEN
  302. CALL CSYTRS( 'U', N, 1, AF, LDAF, IPIV,
  303. $ WORK, N, INFO )
  304. ELSE
  305. CALL CSYTRS( 'L', N, 1, AF, LDAF, IPIV,
  306. $ WORK, N, INFO )
  307. END IF
  308. *
  309. * Multiply by R.
  310. *
  311. DO I = 1, N
  312. WORK( I ) = WORK( I ) * RWORK( I )
  313. END DO
  314. END IF
  315. GO TO 10
  316. END IF
  317. *
  318. * Compute the estimate of the reciprocal condition number.
  319. *
  320. IF( AINVNM .NE. 0.0E+0 )
  321. $ CLA_SYRCOND_C = 1.0E+0 / AINVNM
  322. *
  323. RETURN
  324. *
  325. * End of CLA_SYRCOND_C
  326. *
  327. END