You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cla_geamv.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403
  1. *> \brief \b CLA_GEAMV computes a matrix-vector product using a general matrix to calculate error bounds.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLA_GEAMV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_geamv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_geamv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_geamv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLA_GEAMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,
  22. * Y, INCY )
  23. *
  24. * .. Scalar Arguments ..
  25. * REAL ALPHA, BETA
  26. * INTEGER INCX, INCY, LDA, M, N
  27. * INTEGER TRANS
  28. * ..
  29. * .. Array Arguments ..
  30. * COMPLEX A( LDA, * ), X( * )
  31. * REAL Y( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> CLA_GEAMV performs one of the matrix-vector operations
  41. *>
  42. *> y := alpha*abs(A)*abs(x) + beta*abs(y),
  43. *> or y := alpha*abs(A)**T*abs(x) + beta*abs(y),
  44. *>
  45. *> where alpha and beta are scalars, x and y are vectors and A is an
  46. *> m by n matrix.
  47. *>
  48. *> This function is primarily used in calculating error bounds.
  49. *> To protect against underflow during evaluation, components in
  50. *> the resulting vector are perturbed away from zero by (N+1)
  51. *> times the underflow threshold. To prevent unnecessarily large
  52. *> errors for block-structure embedded in general matrices,
  53. *> "symbolically" zero components are not perturbed. A zero
  54. *> entry is considered "symbolic" if all multiplications involved
  55. *> in computing that entry have at least one zero multiplicand.
  56. *> \endverbatim
  57. *
  58. * Arguments:
  59. * ==========
  60. *
  61. *> \param[in] TRANS
  62. *> \verbatim
  63. *> TRANS is INTEGER
  64. *> On entry, TRANS specifies the operation to be performed as
  65. *> follows:
  66. *>
  67. *> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
  68. *> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
  69. *> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
  70. *>
  71. *> Unchanged on exit.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] M
  75. *> \verbatim
  76. *> M is INTEGER
  77. *> On entry, M specifies the number of rows of the matrix A.
  78. *> M must be at least zero.
  79. *> Unchanged on exit.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] N
  83. *> \verbatim
  84. *> N is INTEGER
  85. *> On entry, N specifies the number of columns of the matrix A.
  86. *> N must be at least zero.
  87. *> Unchanged on exit.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] ALPHA
  91. *> \verbatim
  92. *> ALPHA is REAL
  93. *> On entry, ALPHA specifies the scalar alpha.
  94. *> Unchanged on exit.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] A
  98. *> \verbatim
  99. *> A is COMPLEX array, dimension (LDA,n)
  100. *> Before entry, the leading m by n part of the array A must
  101. *> contain the matrix of coefficients.
  102. *> Unchanged on exit.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LDA
  106. *> \verbatim
  107. *> LDA is INTEGER
  108. *> On entry, LDA specifies the first dimension of A as declared
  109. *> in the calling (sub) program. LDA must be at least
  110. *> max( 1, m ).
  111. *> Unchanged on exit.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] X
  115. *> \verbatim
  116. *> X is COMPLEX array, dimension
  117. *> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
  118. *> and at least
  119. *> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
  120. *> Before entry, the incremented array X must contain the
  121. *> vector x.
  122. *> Unchanged on exit.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] INCX
  126. *> \verbatim
  127. *> INCX is INTEGER
  128. *> On entry, INCX specifies the increment for the elements of
  129. *> X. INCX must not be zero.
  130. *> Unchanged on exit.
  131. *> \endverbatim
  132. *>
  133. *> \param[in] BETA
  134. *> \verbatim
  135. *> BETA is REAL
  136. *> On entry, BETA specifies the scalar beta. When BETA is
  137. *> supplied as zero then Y need not be set on input.
  138. *> Unchanged on exit.
  139. *> \endverbatim
  140. *>
  141. *> \param[in,out] Y
  142. *> \verbatim
  143. *> Y is REAL array, dimension
  144. *> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  145. *> and at least
  146. *> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  147. *> Before entry with BETA non-zero, the incremented array Y
  148. *> must contain the vector y. On exit, Y is overwritten by the
  149. *> updated vector y.
  150. *> \endverbatim
  151. *>
  152. *> \param[in] INCY
  153. *> \verbatim
  154. *> INCY is INTEGER
  155. *> On entry, INCY specifies the increment for the elements of
  156. *> Y. INCY must not be zero.
  157. *> Unchanged on exit.
  158. *>
  159. *> Level 2 Blas routine.
  160. *> \endverbatim
  161. *
  162. * Authors:
  163. * ========
  164. *
  165. *> \author Univ. of Tennessee
  166. *> \author Univ. of California Berkeley
  167. *> \author Univ. of Colorado Denver
  168. *> \author NAG Ltd.
  169. *
  170. *> \ingroup complexGEcomputational
  171. *
  172. * =====================================================================
  173. SUBROUTINE CLA_GEAMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,
  174. $ Y, INCY )
  175. *
  176. * -- LAPACK computational routine --
  177. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  178. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  179. *
  180. * .. Scalar Arguments ..
  181. REAL ALPHA, BETA
  182. INTEGER INCX, INCY, LDA, M, N
  183. INTEGER TRANS
  184. * ..
  185. * .. Array Arguments ..
  186. COMPLEX A( LDA, * ), X( * )
  187. REAL Y( * )
  188. * ..
  189. *
  190. * =====================================================================
  191. *
  192. * .. Parameters ..
  193. COMPLEX ONE, ZERO
  194. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  195. * ..
  196. * .. Local Scalars ..
  197. LOGICAL SYMB_ZERO
  198. REAL TEMP, SAFE1
  199. INTEGER I, INFO, IY, J, JX, KX, KY, LENX, LENY
  200. COMPLEX CDUM
  201. * ..
  202. * .. External Subroutines ..
  203. EXTERNAL XERBLA, SLAMCH
  204. REAL SLAMCH
  205. * ..
  206. * .. External Functions ..
  207. EXTERNAL ILATRANS
  208. INTEGER ILATRANS
  209. * ..
  210. * .. Intrinsic Functions ..
  211. INTRINSIC MAX, ABS, REAL, AIMAG, SIGN
  212. * ..
  213. * .. Statement Functions ..
  214. REAL CABS1
  215. * ..
  216. * .. Statement Function Definitions ..
  217. CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
  218. * ..
  219. * .. Executable Statements ..
  220. *
  221. * Test the input parameters.
  222. *
  223. INFO = 0
  224. IF ( .NOT.( ( TRANS.EQ.ILATRANS( 'N' ) )
  225. $ .OR. ( TRANS.EQ.ILATRANS( 'T' ) )
  226. $ .OR. ( TRANS.EQ.ILATRANS( 'C' ) ) ) ) THEN
  227. INFO = 1
  228. ELSE IF( M.LT.0 )THEN
  229. INFO = 2
  230. ELSE IF( N.LT.0 )THEN
  231. INFO = 3
  232. ELSE IF( LDA.LT.MAX( 1, M ) )THEN
  233. INFO = 6
  234. ELSE IF( INCX.EQ.0 )THEN
  235. INFO = 8
  236. ELSE IF( INCY.EQ.0 )THEN
  237. INFO = 11
  238. END IF
  239. IF( INFO.NE.0 )THEN
  240. CALL XERBLA( 'CLA_GEAMV ', INFO )
  241. RETURN
  242. END IF
  243. *
  244. * Quick return if possible.
  245. *
  246. IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  247. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  248. $ RETURN
  249. *
  250. * Set LENX and LENY, the lengths of the vectors x and y, and set
  251. * up the start points in X and Y.
  252. *
  253. IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  254. LENX = N
  255. LENY = M
  256. ELSE
  257. LENX = M
  258. LENY = N
  259. END IF
  260. IF( INCX.GT.0 )THEN
  261. KX = 1
  262. ELSE
  263. KX = 1 - ( LENX - 1 )*INCX
  264. END IF
  265. IF( INCY.GT.0 )THEN
  266. KY = 1
  267. ELSE
  268. KY = 1 - ( LENY - 1 )*INCY
  269. END IF
  270. *
  271. * Set SAFE1 essentially to be the underflow threshold times the
  272. * number of additions in each row.
  273. *
  274. SAFE1 = SLAMCH( 'Safe minimum' )
  275. SAFE1 = (N+1)*SAFE1
  276. *
  277. * Form y := alpha*abs(A)*abs(x) + beta*abs(y).
  278. *
  279. * The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to
  280. * the inexact flag. Still doesn't help change the iteration order
  281. * to per-column.
  282. *
  283. IY = KY
  284. IF ( INCX.EQ.1 ) THEN
  285. IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  286. DO I = 1, LENY
  287. IF ( BETA .EQ. 0.0 ) THEN
  288. SYMB_ZERO = .TRUE.
  289. Y( IY ) = 0.0
  290. ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
  291. SYMB_ZERO = .TRUE.
  292. ELSE
  293. SYMB_ZERO = .FALSE.
  294. Y( IY ) = BETA * ABS( Y( IY ) )
  295. END IF
  296. IF ( ALPHA .NE. 0.0 ) THEN
  297. DO J = 1, LENX
  298. TEMP = CABS1( A( I, J ) )
  299. SYMB_ZERO = SYMB_ZERO .AND.
  300. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  301. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  302. END DO
  303. END IF
  304. IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  305. $ Y( IY ) + SIGN( SAFE1, Y( IY ) )
  306. IY = IY + INCY
  307. END DO
  308. ELSE
  309. DO I = 1, LENY
  310. IF ( BETA .EQ. 0.0 ) THEN
  311. SYMB_ZERO = .TRUE.
  312. Y( IY ) = 0.0
  313. ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
  314. SYMB_ZERO = .TRUE.
  315. ELSE
  316. SYMB_ZERO = .FALSE.
  317. Y( IY ) = BETA * ABS( Y( IY ) )
  318. END IF
  319. IF ( ALPHA .NE. 0.0 ) THEN
  320. DO J = 1, LENX
  321. TEMP = CABS1( A( J, I ) )
  322. SYMB_ZERO = SYMB_ZERO .AND.
  323. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  324. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  325. END DO
  326. END IF
  327. IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  328. $ Y( IY ) + SIGN( SAFE1, Y( IY ) )
  329. IY = IY + INCY
  330. END DO
  331. END IF
  332. ELSE
  333. IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  334. DO I = 1, LENY
  335. IF ( BETA .EQ. 0.0 ) THEN
  336. SYMB_ZERO = .TRUE.
  337. Y( IY ) = 0.0
  338. ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
  339. SYMB_ZERO = .TRUE.
  340. ELSE
  341. SYMB_ZERO = .FALSE.
  342. Y( IY ) = BETA * ABS( Y( IY ) )
  343. END IF
  344. IF ( ALPHA .NE. 0.0 ) THEN
  345. JX = KX
  346. DO J = 1, LENX
  347. TEMP = CABS1( A( I, J ) )
  348. SYMB_ZERO = SYMB_ZERO .AND.
  349. $ ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  350. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  351. JX = JX + INCX
  352. END DO
  353. END IF
  354. IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  355. $ Y( IY ) + SIGN( SAFE1, Y( IY ) )
  356. IY = IY + INCY
  357. END DO
  358. ELSE
  359. DO I = 1, LENY
  360. IF ( BETA .EQ. 0.0 ) THEN
  361. SYMB_ZERO = .TRUE.
  362. Y( IY ) = 0.0
  363. ELSE IF ( Y( IY ) .EQ. 0.0 ) THEN
  364. SYMB_ZERO = .TRUE.
  365. ELSE
  366. SYMB_ZERO = .FALSE.
  367. Y( IY ) = BETA * ABS( Y( IY ) )
  368. END IF
  369. IF ( ALPHA .NE. 0.0 ) THEN
  370. JX = KX
  371. DO J = 1, LENX
  372. TEMP = CABS1( A( J, I ) )
  373. SYMB_ZERO = SYMB_ZERO .AND.
  374. $ ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  375. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  376. JX = JX + INCX
  377. END DO
  378. END IF
  379. IF ( .NOT.SYMB_ZERO ) Y( IY ) =
  380. $ Y( IY ) + SIGN( SAFE1, Y( IY ) )
  381. IY = IY + INCY
  382. END DO
  383. END IF
  384. END IF
  385. *
  386. RETURN
  387. *
  388. * End of CLA_GEAMV
  389. *
  390. END