You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zggsvd.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462
  1. *> \brief <b> ZGGSVD computes the singular value decomposition (SVD) for OTHER matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGGSVD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
  22. * LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
  23. * RWORK, IWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBQ, JOBU, JOBV
  27. * INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER IWORK( * )
  31. * DOUBLE PRECISION ALPHA( * ), BETA( * ), RWORK( * )
  32. * COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  33. * $ U( LDU, * ), V( LDV, * ), WORK( * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> This routine is deprecated and has been replaced by routine ZGGSVD3.
  43. *>
  44. *> ZGGSVD computes the generalized singular value decomposition (GSVD)
  45. *> of an M-by-N complex matrix A and P-by-N complex matrix B:
  46. *>
  47. *> U**H*A*Q = D1*( 0 R ), V**H*B*Q = D2*( 0 R )
  48. *>
  49. *> where U, V and Q are unitary matrices.
  50. *> Let K+L = the effective numerical rank of the
  51. *> matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
  52. *> triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
  53. *> matrices and of the following structures, respectively:
  54. *>
  55. *> If M-K-L >= 0,
  56. *>
  57. *> K L
  58. *> D1 = K ( I 0 )
  59. *> L ( 0 C )
  60. *> M-K-L ( 0 0 )
  61. *>
  62. *> K L
  63. *> D2 = L ( 0 S )
  64. *> P-L ( 0 0 )
  65. *>
  66. *> N-K-L K L
  67. *> ( 0 R ) = K ( 0 R11 R12 )
  68. *> L ( 0 0 R22 )
  69. *> where
  70. *>
  71. *> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
  72. *> S = diag( BETA(K+1), ... , BETA(K+L) ),
  73. *> C**2 + S**2 = I.
  74. *>
  75. *> R is stored in A(1:K+L,N-K-L+1:N) on exit.
  76. *>
  77. *> If M-K-L < 0,
  78. *>
  79. *> K M-K K+L-M
  80. *> D1 = K ( I 0 0 )
  81. *> M-K ( 0 C 0 )
  82. *>
  83. *> K M-K K+L-M
  84. *> D2 = M-K ( 0 S 0 )
  85. *> K+L-M ( 0 0 I )
  86. *> P-L ( 0 0 0 )
  87. *>
  88. *> N-K-L K M-K K+L-M
  89. *> ( 0 R ) = K ( 0 R11 R12 R13 )
  90. *> M-K ( 0 0 R22 R23 )
  91. *> K+L-M ( 0 0 0 R33 )
  92. *>
  93. *> where
  94. *>
  95. *> C = diag( ALPHA(K+1), ... , ALPHA(M) ),
  96. *> S = diag( BETA(K+1), ... , BETA(M) ),
  97. *> C**2 + S**2 = I.
  98. *>
  99. *> (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
  100. *> ( 0 R22 R23 )
  101. *> in B(M-K+1:L,N+M-K-L+1:N) on exit.
  102. *>
  103. *> The routine computes C, S, R, and optionally the unitary
  104. *> transformation matrices U, V and Q.
  105. *>
  106. *> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
  107. *> A and B implicitly gives the SVD of A*inv(B):
  108. *> A*inv(B) = U*(D1*inv(D2))*V**H.
  109. *> If ( A**H,B**H)**H has orthonormal columns, then the GSVD of A and B is also
  110. *> equal to the CS decomposition of A and B. Furthermore, the GSVD can
  111. *> be used to derive the solution of the eigenvalue problem:
  112. *> A**H*A x = lambda* B**H*B x.
  113. *> In some literature, the GSVD of A and B is presented in the form
  114. *> U**H*A*X = ( 0 D1 ), V**H*B*X = ( 0 D2 )
  115. *> where U and V are orthogonal and X is nonsingular, and D1 and D2 are
  116. *> ``diagonal''. The former GSVD form can be converted to the latter
  117. *> form by taking the nonsingular matrix X as
  118. *>
  119. *> X = Q*( I 0 )
  120. *> ( 0 inv(R) )
  121. *> \endverbatim
  122. *
  123. * Arguments:
  124. * ==========
  125. *
  126. *> \param[in] JOBU
  127. *> \verbatim
  128. *> JOBU is CHARACTER*1
  129. *> = 'U': Unitary matrix U is computed;
  130. *> = 'N': U is not computed.
  131. *> \endverbatim
  132. *>
  133. *> \param[in] JOBV
  134. *> \verbatim
  135. *> JOBV is CHARACTER*1
  136. *> = 'V': Unitary matrix V is computed;
  137. *> = 'N': V is not computed.
  138. *> \endverbatim
  139. *>
  140. *> \param[in] JOBQ
  141. *> \verbatim
  142. *> JOBQ is CHARACTER*1
  143. *> = 'Q': Unitary matrix Q is computed;
  144. *> = 'N': Q is not computed.
  145. *> \endverbatim
  146. *>
  147. *> \param[in] M
  148. *> \verbatim
  149. *> M is INTEGER
  150. *> The number of rows of the matrix A. M >= 0.
  151. *> \endverbatim
  152. *>
  153. *> \param[in] N
  154. *> \verbatim
  155. *> N is INTEGER
  156. *> The number of columns of the matrices A and B. N >= 0.
  157. *> \endverbatim
  158. *>
  159. *> \param[in] P
  160. *> \verbatim
  161. *> P is INTEGER
  162. *> The number of rows of the matrix B. P >= 0.
  163. *> \endverbatim
  164. *>
  165. *> \param[out] K
  166. *> \verbatim
  167. *> K is INTEGER
  168. *> \endverbatim
  169. *>
  170. *> \param[out] L
  171. *> \verbatim
  172. *> L is INTEGER
  173. *>
  174. *> On exit, K and L specify the dimension of the subblocks
  175. *> described in Purpose.
  176. *> K + L = effective numerical rank of (A**H,B**H)**H.
  177. *> \endverbatim
  178. *>
  179. *> \param[in,out] A
  180. *> \verbatim
  181. *> A is COMPLEX*16 array, dimension (LDA,N)
  182. *> On entry, the M-by-N matrix A.
  183. *> On exit, A contains the triangular matrix R, or part of R.
  184. *> See Purpose for details.
  185. *> \endverbatim
  186. *>
  187. *> \param[in] LDA
  188. *> \verbatim
  189. *> LDA is INTEGER
  190. *> The leading dimension of the array A. LDA >= max(1,M).
  191. *> \endverbatim
  192. *>
  193. *> \param[in,out] B
  194. *> \verbatim
  195. *> B is COMPLEX*16 array, dimension (LDB,N)
  196. *> On entry, the P-by-N matrix B.
  197. *> On exit, B contains part of the triangular matrix R if
  198. *> M-K-L < 0. See Purpose for details.
  199. *> \endverbatim
  200. *>
  201. *> \param[in] LDB
  202. *> \verbatim
  203. *> LDB is INTEGER
  204. *> The leading dimension of the array B. LDB >= max(1,P).
  205. *> \endverbatim
  206. *>
  207. *> \param[out] ALPHA
  208. *> \verbatim
  209. *> ALPHA is DOUBLE PRECISION array, dimension (N)
  210. *> \endverbatim
  211. *>
  212. *> \param[out] BETA
  213. *> \verbatim
  214. *> BETA is DOUBLE PRECISION array, dimension (N)
  215. *>
  216. *> On exit, ALPHA and BETA contain the generalized singular
  217. *> value pairs of A and B;
  218. *> ALPHA(1:K) = 1,
  219. *> BETA(1:K) = 0,
  220. *> and if M-K-L >= 0,
  221. *> ALPHA(K+1:K+L) = C,
  222. *> BETA(K+1:K+L) = S,
  223. *> or if M-K-L < 0,
  224. *> ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
  225. *> BETA(K+1:M) =S, BETA(M+1:K+L) =1
  226. *> and
  227. *> ALPHA(K+L+1:N) = 0
  228. *> BETA(K+L+1:N) = 0
  229. *> \endverbatim
  230. *>
  231. *> \param[out] U
  232. *> \verbatim
  233. *> U is COMPLEX*16 array, dimension (LDU,M)
  234. *> If JOBU = 'U', U contains the M-by-M unitary matrix U.
  235. *> If JOBU = 'N', U is not referenced.
  236. *> \endverbatim
  237. *>
  238. *> \param[in] LDU
  239. *> \verbatim
  240. *> LDU is INTEGER
  241. *> The leading dimension of the array U. LDU >= max(1,M) if
  242. *> JOBU = 'U'; LDU >= 1 otherwise.
  243. *> \endverbatim
  244. *>
  245. *> \param[out] V
  246. *> \verbatim
  247. *> V is COMPLEX*16 array, dimension (LDV,P)
  248. *> If JOBV = 'V', V contains the P-by-P unitary matrix V.
  249. *> If JOBV = 'N', V is not referenced.
  250. *> \endverbatim
  251. *>
  252. *> \param[in] LDV
  253. *> \verbatim
  254. *> LDV is INTEGER
  255. *> The leading dimension of the array V. LDV >= max(1,P) if
  256. *> JOBV = 'V'; LDV >= 1 otherwise.
  257. *> \endverbatim
  258. *>
  259. *> \param[out] Q
  260. *> \verbatim
  261. *> Q is COMPLEX*16 array, dimension (LDQ,N)
  262. *> If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
  263. *> If JOBQ = 'N', Q is not referenced.
  264. *> \endverbatim
  265. *>
  266. *> \param[in] LDQ
  267. *> \verbatim
  268. *> LDQ is INTEGER
  269. *> The leading dimension of the array Q. LDQ >= max(1,N) if
  270. *> JOBQ = 'Q'; LDQ >= 1 otherwise.
  271. *> \endverbatim
  272. *>
  273. *> \param[out] WORK
  274. *> \verbatim
  275. *> WORK is COMPLEX*16 array, dimension (max(3*N,M,P)+N)
  276. *> \endverbatim
  277. *>
  278. *> \param[out] RWORK
  279. *> \verbatim
  280. *> RWORK is DOUBLE PRECISION array, dimension (2*N)
  281. *> \endverbatim
  282. *>
  283. *> \param[out] IWORK
  284. *> \verbatim
  285. *> IWORK is INTEGER array, dimension (N)
  286. *> On exit, IWORK stores the sorting information. More
  287. *> precisely, the following loop will sort ALPHA
  288. *> for I = K+1, min(M,K+L)
  289. *> swap ALPHA(I) and ALPHA(IWORK(I))
  290. *> endfor
  291. *> such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
  292. *> \endverbatim
  293. *>
  294. *> \param[out] INFO
  295. *> \verbatim
  296. *> INFO is INTEGER
  297. *> = 0: successful exit.
  298. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  299. *> > 0: if INFO = 1, the Jacobi-type procedure failed to
  300. *> converge. For further details, see subroutine ZTGSJA.
  301. *> \endverbatim
  302. *
  303. *> \par Internal Parameters:
  304. * =========================
  305. *>
  306. *> \verbatim
  307. *> TOLA DOUBLE PRECISION
  308. *> TOLB DOUBLE PRECISION
  309. *> TOLA and TOLB are the thresholds to determine the effective
  310. *> rank of (A**H,B**H)**H. Generally, they are set to
  311. *> TOLA = MAX(M,N)*norm(A)*MAZHEPS,
  312. *> TOLB = MAX(P,N)*norm(B)*MAZHEPS.
  313. *> The size of TOLA and TOLB may affect the size of backward
  314. *> errors of the decomposition.
  315. *> \endverbatim
  316. *
  317. * Authors:
  318. * ========
  319. *
  320. *> \author Univ. of Tennessee
  321. *> \author Univ. of California Berkeley
  322. *> \author Univ. of Colorado Denver
  323. *> \author NAG Ltd.
  324. *
  325. *> \ingroup complex16OTHERsing
  326. *
  327. *> \par Contributors:
  328. * ==================
  329. *>
  330. *> Ming Gu and Huan Ren, Computer Science Division, University of
  331. *> California at Berkeley, USA
  332. *>
  333. * =====================================================================
  334. SUBROUTINE ZGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
  335. $ LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
  336. $ RWORK, IWORK, INFO )
  337. *
  338. * -- LAPACK driver routine --
  339. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  340. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  341. *
  342. * .. Scalar Arguments ..
  343. CHARACTER JOBQ, JOBU, JOBV
  344. INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
  345. * ..
  346. * .. Array Arguments ..
  347. INTEGER IWORK( * )
  348. DOUBLE PRECISION ALPHA( * ), BETA( * ), RWORK( * )
  349. COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  350. $ U( LDU, * ), V( LDV, * ), WORK( * )
  351. * ..
  352. *
  353. * =====================================================================
  354. *
  355. * .. Local Scalars ..
  356. LOGICAL WANTQ, WANTU, WANTV
  357. INTEGER I, IBND, ISUB, J, NCYCLE
  358. DOUBLE PRECISION ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
  359. * ..
  360. * .. External Functions ..
  361. LOGICAL LSAME
  362. DOUBLE PRECISION DLAMCH, ZLANGE
  363. EXTERNAL LSAME, DLAMCH, ZLANGE
  364. * ..
  365. * .. External Subroutines ..
  366. EXTERNAL DCOPY, XERBLA, ZGGSVP, ZTGSJA
  367. * ..
  368. * .. Intrinsic Functions ..
  369. INTRINSIC MAX, MIN
  370. * ..
  371. * .. Executable Statements ..
  372. *
  373. * Decode and test the input parameters
  374. *
  375. WANTU = LSAME( JOBU, 'U' )
  376. WANTV = LSAME( JOBV, 'V' )
  377. WANTQ = LSAME( JOBQ, 'Q' )
  378. *
  379. INFO = 0
  380. IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
  381. INFO = -1
  382. ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
  383. INFO = -2
  384. ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
  385. INFO = -3
  386. ELSE IF( M.LT.0 ) THEN
  387. INFO = -4
  388. ELSE IF( N.LT.0 ) THEN
  389. INFO = -5
  390. ELSE IF( P.LT.0 ) THEN
  391. INFO = -6
  392. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  393. INFO = -10
  394. ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  395. INFO = -12
  396. ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
  397. INFO = -16
  398. ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
  399. INFO = -18
  400. ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  401. INFO = -20
  402. END IF
  403. IF( INFO.NE.0 ) THEN
  404. CALL XERBLA( 'ZGGSVD', -INFO )
  405. RETURN
  406. END IF
  407. *
  408. * Compute the Frobenius norm of matrices A and B
  409. *
  410. ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
  411. BNORM = ZLANGE( '1', P, N, B, LDB, RWORK )
  412. *
  413. * Get machine precision and set up threshold for determining
  414. * the effective numerical rank of the matrices A and B.
  415. *
  416. ULP = DLAMCH( 'Precision' )
  417. UNFL = DLAMCH( 'Safe Minimum' )
  418. TOLA = MAX( M, N )*MAX( ANORM, UNFL )*ULP
  419. TOLB = MAX( P, N )*MAX( BNORM, UNFL )*ULP
  420. *
  421. CALL ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
  422. $ TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK,
  423. $ WORK, WORK( N+1 ), INFO )
  424. *
  425. * Compute the GSVD of two upper "triangular" matrices
  426. *
  427. CALL ZTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
  428. $ TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
  429. $ WORK, NCYCLE, INFO )
  430. *
  431. * Sort the singular values and store the pivot indices in IWORK
  432. * Copy ALPHA to RWORK, then sort ALPHA in RWORK
  433. *
  434. CALL DCOPY( N, ALPHA, 1, RWORK, 1 )
  435. IBND = MIN( L, M-K )
  436. DO 20 I = 1, IBND
  437. *
  438. * Scan for largest ALPHA(K+I)
  439. *
  440. ISUB = I
  441. SMAX = RWORK( K+I )
  442. DO 10 J = I + 1, IBND
  443. TEMP = RWORK( K+J )
  444. IF( TEMP.GT.SMAX ) THEN
  445. ISUB = J
  446. SMAX = TEMP
  447. END IF
  448. 10 CONTINUE
  449. IF( ISUB.NE.I ) THEN
  450. RWORK( K+ISUB ) = RWORK( K+I )
  451. RWORK( K+I ) = SMAX
  452. IWORK( K+I ) = K + ISUB
  453. ELSE
  454. IWORK( K+I ) = K + I
  455. END IF
  456. 20 CONTINUE
  457. *
  458. RETURN
  459. *
  460. * End of ZGGSVD
  461. *
  462. END