You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlatzm.f 6.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. *> \brief \b DLATZM
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLATZM + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatzm.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatzm.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatzm.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLATZM( SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER SIDE
  25. * INTEGER INCV, LDC, M, N
  26. * DOUBLE PRECISION TAU
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION C1( LDC, * ), C2( LDC, * ), V( * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> This routine is deprecated and has been replaced by routine DORMRZ.
  39. *>
  40. *> DLATZM applies a Householder matrix generated by DTZRQF to a matrix.
  41. *>
  42. *> Let P = I - tau*u*u**T, u = ( 1 ),
  43. *> ( v )
  44. *> where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if
  45. *> SIDE = 'R'.
  46. *>
  47. *> If SIDE equals 'L', let
  48. *> C = [ C1 ] 1
  49. *> [ C2 ] m-1
  50. *> n
  51. *> Then C is overwritten by P*C.
  52. *>
  53. *> If SIDE equals 'R', let
  54. *> C = [ C1, C2 ] m
  55. *> 1 n-1
  56. *> Then C is overwritten by C*P.
  57. *> \endverbatim
  58. *
  59. * Arguments:
  60. * ==========
  61. *
  62. *> \param[in] SIDE
  63. *> \verbatim
  64. *> SIDE is CHARACTER*1
  65. *> = 'L': form P * C
  66. *> = 'R': form C * P
  67. *> \endverbatim
  68. *>
  69. *> \param[in] M
  70. *> \verbatim
  71. *> M is INTEGER
  72. *> The number of rows of the matrix C.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] N
  76. *> \verbatim
  77. *> N is INTEGER
  78. *> The number of columns of the matrix C.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] V
  82. *> \verbatim
  83. *> V is DOUBLE PRECISION array, dimension
  84. *> (1 + (M-1)*abs(INCV)) if SIDE = 'L'
  85. *> (1 + (N-1)*abs(INCV)) if SIDE = 'R'
  86. *> The vector v in the representation of P. V is not used
  87. *> if TAU = 0.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] INCV
  91. *> \verbatim
  92. *> INCV is INTEGER
  93. *> The increment between elements of v. INCV <> 0
  94. *> \endverbatim
  95. *>
  96. *> \param[in] TAU
  97. *> \verbatim
  98. *> TAU is DOUBLE PRECISION
  99. *> The value tau in the representation of P.
  100. *> \endverbatim
  101. *>
  102. *> \param[in,out] C1
  103. *> \verbatim
  104. *> C1 is DOUBLE PRECISION array, dimension
  105. *> (LDC,N) if SIDE = 'L'
  106. *> (M,1) if SIDE = 'R'
  107. *> On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1
  108. *> if SIDE = 'R'.
  109. *>
  110. *> On exit, the first row of P*C if SIDE = 'L', or the first
  111. *> column of C*P if SIDE = 'R'.
  112. *> \endverbatim
  113. *>
  114. *> \param[in,out] C2
  115. *> \verbatim
  116. *> C2 is DOUBLE PRECISION array, dimension
  117. *> (LDC, N) if SIDE = 'L'
  118. *> (LDC, N-1) if SIDE = 'R'
  119. *> On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the
  120. *> m x (n - 1) matrix C2 if SIDE = 'R'.
  121. *>
  122. *> On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P
  123. *> if SIDE = 'R'.
  124. *> \endverbatim
  125. *>
  126. *> \param[in] LDC
  127. *> \verbatim
  128. *> LDC is INTEGER
  129. *> The leading dimension of the arrays C1 and C2. LDC >= (1,M).
  130. *> \endverbatim
  131. *>
  132. *> \param[out] WORK
  133. *> \verbatim
  134. *> WORK is DOUBLE PRECISION array, dimension
  135. *> (N) if SIDE = 'L'
  136. *> (M) if SIDE = 'R'
  137. *> \endverbatim
  138. *
  139. * Authors:
  140. * ========
  141. *
  142. *> \author Univ. of Tennessee
  143. *> \author Univ. of California Berkeley
  144. *> \author Univ. of Colorado Denver
  145. *> \author NAG Ltd.
  146. *
  147. *> \ingroup doubleOTHERcomputational
  148. *
  149. * =====================================================================
  150. SUBROUTINE DLATZM( SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK )
  151. *
  152. * -- LAPACK computational routine --
  153. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  154. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  155. *
  156. * .. Scalar Arguments ..
  157. CHARACTER SIDE
  158. INTEGER INCV, LDC, M, N
  159. DOUBLE PRECISION TAU
  160. * ..
  161. * .. Array Arguments ..
  162. DOUBLE PRECISION C1( LDC, * ), C2( LDC, * ), V( * ), WORK( * )
  163. * ..
  164. *
  165. * =====================================================================
  166. *
  167. * .. Parameters ..
  168. DOUBLE PRECISION ONE, ZERO
  169. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  170. * ..
  171. * .. External Subroutines ..
  172. EXTERNAL DAXPY, DCOPY, DGEMV, DGER
  173. * ..
  174. * .. External Functions ..
  175. LOGICAL LSAME
  176. EXTERNAL LSAME
  177. * ..
  178. * .. Intrinsic Functions ..
  179. INTRINSIC MIN
  180. * ..
  181. * .. Executable Statements ..
  182. *
  183. IF( ( MIN( M, N ).EQ.0 ) .OR. ( TAU.EQ.ZERO ) )
  184. $ RETURN
  185. *
  186. IF( LSAME( SIDE, 'L' ) ) THEN
  187. *
  188. * w := (C1 + v**T * C2)**T
  189. *
  190. CALL DCOPY( N, C1, LDC, WORK, 1 )
  191. CALL DGEMV( 'Transpose', M-1, N, ONE, C2, LDC, V, INCV, ONE,
  192. $ WORK, 1 )
  193. *
  194. * [ C1 ] := [ C1 ] - tau* [ 1 ] * w**T
  195. * [ C2 ] [ C2 ] [ v ]
  196. *
  197. CALL DAXPY( N, -TAU, WORK, 1, C1, LDC )
  198. CALL DGER( M-1, N, -TAU, V, INCV, WORK, 1, C2, LDC )
  199. *
  200. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  201. *
  202. * w := C1 + C2 * v
  203. *
  204. CALL DCOPY( M, C1, 1, WORK, 1 )
  205. CALL DGEMV( 'No transpose', M, N-1, ONE, C2, LDC, V, INCV, ONE,
  206. $ WORK, 1 )
  207. *
  208. * [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v**T]
  209. *
  210. CALL DAXPY( M, -TAU, WORK, 1, C1, 1 )
  211. CALL DGER( M, N-1, -TAU, WORK, 1, V, INCV, C2, LDC )
  212. END IF
  213. *
  214. RETURN
  215. *
  216. * End of DLATZM
  217. *
  218. END