You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dggsvd.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461
  1. *> \brief <b> DGGSVD computes the singular value decomposition (SVD) for OTHER matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGGSVD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggsvd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggsvd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggsvd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
  22. * LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
  23. * IWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBQ, JOBU, JOBV
  27. * INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER IWORK( * )
  31. * DOUBLE PRECISION A( LDA, * ), ALPHA( * ), B( LDB, * ),
  32. * $ BETA( * ), Q( LDQ, * ), U( LDU, * ),
  33. * $ V( LDV, * ), WORK( * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> This routine is deprecated and has been replaced by routine DGGSVD3.
  43. *>
  44. *> DGGSVD computes the generalized singular value decomposition (GSVD)
  45. *> of an M-by-N real matrix A and P-by-N real matrix B:
  46. *>
  47. *> U**T*A*Q = D1*( 0 R ), V**T*B*Q = D2*( 0 R )
  48. *>
  49. *> where U, V and Q are orthogonal matrices.
  50. *> Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T,
  51. *> then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
  52. *> D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the
  53. *> following structures, respectively:
  54. *>
  55. *> If M-K-L >= 0,
  56. *>
  57. *> K L
  58. *> D1 = K ( I 0 )
  59. *> L ( 0 C )
  60. *> M-K-L ( 0 0 )
  61. *>
  62. *> K L
  63. *> D2 = L ( 0 S )
  64. *> P-L ( 0 0 )
  65. *>
  66. *> N-K-L K L
  67. *> ( 0 R ) = K ( 0 R11 R12 )
  68. *> L ( 0 0 R22 )
  69. *>
  70. *> where
  71. *>
  72. *> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
  73. *> S = diag( BETA(K+1), ... , BETA(K+L) ),
  74. *> C**2 + S**2 = I.
  75. *>
  76. *> R is stored in A(1:K+L,N-K-L+1:N) on exit.
  77. *>
  78. *> If M-K-L < 0,
  79. *>
  80. *> K M-K K+L-M
  81. *> D1 = K ( I 0 0 )
  82. *> M-K ( 0 C 0 )
  83. *>
  84. *> K M-K K+L-M
  85. *> D2 = M-K ( 0 S 0 )
  86. *> K+L-M ( 0 0 I )
  87. *> P-L ( 0 0 0 )
  88. *>
  89. *> N-K-L K M-K K+L-M
  90. *> ( 0 R ) = K ( 0 R11 R12 R13 )
  91. *> M-K ( 0 0 R22 R23 )
  92. *> K+L-M ( 0 0 0 R33 )
  93. *>
  94. *> where
  95. *>
  96. *> C = diag( ALPHA(K+1), ... , ALPHA(M) ),
  97. *> S = diag( BETA(K+1), ... , BETA(M) ),
  98. *> C**2 + S**2 = I.
  99. *>
  100. *> (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
  101. *> ( 0 R22 R23 )
  102. *> in B(M-K+1:L,N+M-K-L+1:N) on exit.
  103. *>
  104. *> The routine computes C, S, R, and optionally the orthogonal
  105. *> transformation matrices U, V and Q.
  106. *>
  107. *> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
  108. *> A and B implicitly gives the SVD of A*inv(B):
  109. *> A*inv(B) = U*(D1*inv(D2))*V**T.
  110. *> If ( A**T,B**T)**T has orthonormal columns, then the GSVD of A and B is
  111. *> also equal to the CS decomposition of A and B. Furthermore, the GSVD
  112. *> can be used to derive the solution of the eigenvalue problem:
  113. *> A**T*A x = lambda* B**T*B x.
  114. *> In some literature, the GSVD of A and B is presented in the form
  115. *> U**T*A*X = ( 0 D1 ), V**T*B*X = ( 0 D2 )
  116. *> where U and V are orthogonal and X is nonsingular, D1 and D2 are
  117. *> ``diagonal''. The former GSVD form can be converted to the latter
  118. *> form by taking the nonsingular matrix X as
  119. *>
  120. *> X = Q*( I 0 )
  121. *> ( 0 inv(R) ).
  122. *> \endverbatim
  123. *
  124. * Arguments:
  125. * ==========
  126. *
  127. *> \param[in] JOBU
  128. *> \verbatim
  129. *> JOBU is CHARACTER*1
  130. *> = 'U': Orthogonal matrix U is computed;
  131. *> = 'N': U is not computed.
  132. *> \endverbatim
  133. *>
  134. *> \param[in] JOBV
  135. *> \verbatim
  136. *> JOBV is CHARACTER*1
  137. *> = 'V': Orthogonal matrix V is computed;
  138. *> = 'N': V is not computed.
  139. *> \endverbatim
  140. *>
  141. *> \param[in] JOBQ
  142. *> \verbatim
  143. *> JOBQ is CHARACTER*1
  144. *> = 'Q': Orthogonal matrix Q is computed;
  145. *> = 'N': Q is not computed.
  146. *> \endverbatim
  147. *>
  148. *> \param[in] M
  149. *> \verbatim
  150. *> M is INTEGER
  151. *> The number of rows of the matrix A. M >= 0.
  152. *> \endverbatim
  153. *>
  154. *> \param[in] N
  155. *> \verbatim
  156. *> N is INTEGER
  157. *> The number of columns of the matrices A and B. N >= 0.
  158. *> \endverbatim
  159. *>
  160. *> \param[in] P
  161. *> \verbatim
  162. *> P is INTEGER
  163. *> The number of rows of the matrix B. P >= 0.
  164. *> \endverbatim
  165. *>
  166. *> \param[out] K
  167. *> \verbatim
  168. *> K is INTEGER
  169. *> \endverbatim
  170. *>
  171. *> \param[out] L
  172. *> \verbatim
  173. *> L is INTEGER
  174. *>
  175. *> On exit, K and L specify the dimension of the subblocks
  176. *> described in Purpose.
  177. *> K + L = effective numerical rank of (A**T,B**T)**T.
  178. *> \endverbatim
  179. *>
  180. *> \param[in,out] A
  181. *> \verbatim
  182. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  183. *> On entry, the M-by-N matrix A.
  184. *> On exit, A contains the triangular matrix R, or part of R.
  185. *> See Purpose for details.
  186. *> \endverbatim
  187. *>
  188. *> \param[in] LDA
  189. *> \verbatim
  190. *> LDA is INTEGER
  191. *> The leading dimension of the array A. LDA >= max(1,M).
  192. *> \endverbatim
  193. *>
  194. *> \param[in,out] B
  195. *> \verbatim
  196. *> B is DOUBLE PRECISION array, dimension (LDB,N)
  197. *> On entry, the P-by-N matrix B.
  198. *> On exit, B contains the triangular matrix R if M-K-L < 0.
  199. *> See Purpose for details.
  200. *> \endverbatim
  201. *>
  202. *> \param[in] LDB
  203. *> \verbatim
  204. *> LDB is INTEGER
  205. *> The leading dimension of the array B. LDB >= max(1,P).
  206. *> \endverbatim
  207. *>
  208. *> \param[out] ALPHA
  209. *> \verbatim
  210. *> ALPHA is DOUBLE PRECISION array, dimension (N)
  211. *> \endverbatim
  212. *>
  213. *> \param[out] BETA
  214. *> \verbatim
  215. *> BETA is DOUBLE PRECISION array, dimension (N)
  216. *>
  217. *> On exit, ALPHA and BETA contain the generalized singular
  218. *> value pairs of A and B;
  219. *> ALPHA(1:K) = 1,
  220. *> BETA(1:K) = 0,
  221. *> and if M-K-L >= 0,
  222. *> ALPHA(K+1:K+L) = C,
  223. *> BETA(K+1:K+L) = S,
  224. *> or if M-K-L < 0,
  225. *> ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
  226. *> BETA(K+1:M) =S, BETA(M+1:K+L) =1
  227. *> and
  228. *> ALPHA(K+L+1:N) = 0
  229. *> BETA(K+L+1:N) = 0
  230. *> \endverbatim
  231. *>
  232. *> \param[out] U
  233. *> \verbatim
  234. *> U is DOUBLE PRECISION array, dimension (LDU,M)
  235. *> If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
  236. *> If JOBU = 'N', U is not referenced.
  237. *> \endverbatim
  238. *>
  239. *> \param[in] LDU
  240. *> \verbatim
  241. *> LDU is INTEGER
  242. *> The leading dimension of the array U. LDU >= max(1,M) if
  243. *> JOBU = 'U'; LDU >= 1 otherwise.
  244. *> \endverbatim
  245. *>
  246. *> \param[out] V
  247. *> \verbatim
  248. *> V is DOUBLE PRECISION array, dimension (LDV,P)
  249. *> If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
  250. *> If JOBV = 'N', V is not referenced.
  251. *> \endverbatim
  252. *>
  253. *> \param[in] LDV
  254. *> \verbatim
  255. *> LDV is INTEGER
  256. *> The leading dimension of the array V. LDV >= max(1,P) if
  257. *> JOBV = 'V'; LDV >= 1 otherwise.
  258. *> \endverbatim
  259. *>
  260. *> \param[out] Q
  261. *> \verbatim
  262. *> Q is DOUBLE PRECISION array, dimension (LDQ,N)
  263. *> If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
  264. *> If JOBQ = 'N', Q is not referenced.
  265. *> \endverbatim
  266. *>
  267. *> \param[in] LDQ
  268. *> \verbatim
  269. *> LDQ is INTEGER
  270. *> The leading dimension of the array Q. LDQ >= max(1,N) if
  271. *> JOBQ = 'Q'; LDQ >= 1 otherwise.
  272. *> \endverbatim
  273. *>
  274. *> \param[out] WORK
  275. *> \verbatim
  276. *> WORK is DOUBLE PRECISION array,
  277. *> dimension (max(3*N,M,P)+N)
  278. *> \endverbatim
  279. *>
  280. *> \param[out] IWORK
  281. *> \verbatim
  282. *> IWORK is INTEGER array, dimension (N)
  283. *> On exit, IWORK stores the sorting information. More
  284. *> precisely, the following loop will sort ALPHA
  285. *> for I = K+1, min(M,K+L)
  286. *> swap ALPHA(I) and ALPHA(IWORK(I))
  287. *> endfor
  288. *> such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
  289. *> \endverbatim
  290. *>
  291. *> \param[out] INFO
  292. *> \verbatim
  293. *> INFO is INTEGER
  294. *> = 0: successful exit
  295. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  296. *> > 0: if INFO = 1, the Jacobi-type procedure failed to
  297. *> converge. For further details, see subroutine DTGSJA.
  298. *> \endverbatim
  299. *
  300. *> \par Internal Parameters:
  301. * =========================
  302. *>
  303. *> \verbatim
  304. *> TOLA DOUBLE PRECISION
  305. *> TOLB DOUBLE PRECISION
  306. *> TOLA and TOLB are the thresholds to determine the effective
  307. *> rank of (A',B')**T. Generally, they are set to
  308. *> TOLA = MAX(M,N)*norm(A)*MAZHEPS,
  309. *> TOLB = MAX(P,N)*norm(B)*MAZHEPS.
  310. *> The size of TOLA and TOLB may affect the size of backward
  311. *> errors of the decomposition.
  312. *> \endverbatim
  313. *
  314. * Authors:
  315. * ========
  316. *
  317. *> \author Univ. of Tennessee
  318. *> \author Univ. of California Berkeley
  319. *> \author Univ. of Colorado Denver
  320. *> \author NAG Ltd.
  321. *
  322. *> \ingroup doubleOTHERsing
  323. *
  324. *> \par Contributors:
  325. * ==================
  326. *>
  327. *> Ming Gu and Huan Ren, Computer Science Division, University of
  328. *> California at Berkeley, USA
  329. *>
  330. * =====================================================================
  331. SUBROUTINE DGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
  332. $ LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
  333. $ IWORK, INFO )
  334. *
  335. * -- LAPACK driver routine --
  336. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  337. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  338. *
  339. * .. Scalar Arguments ..
  340. CHARACTER JOBQ, JOBU, JOBV
  341. INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
  342. * ..
  343. * .. Array Arguments ..
  344. INTEGER IWORK( * )
  345. DOUBLE PRECISION A( LDA, * ), ALPHA( * ), B( LDB, * ),
  346. $ BETA( * ), Q( LDQ, * ), U( LDU, * ),
  347. $ V( LDV, * ), WORK( * )
  348. * ..
  349. *
  350. * =====================================================================
  351. *
  352. * .. Local Scalars ..
  353. LOGICAL WANTQ, WANTU, WANTV
  354. INTEGER I, IBND, ISUB, J, NCYCLE
  355. DOUBLE PRECISION ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
  356. * ..
  357. * .. External Functions ..
  358. LOGICAL LSAME
  359. DOUBLE PRECISION DLAMCH, DLANGE
  360. EXTERNAL LSAME, DLAMCH, DLANGE
  361. * ..
  362. * .. External Subroutines ..
  363. EXTERNAL DCOPY, DGGSVP, DTGSJA, XERBLA
  364. * ..
  365. * .. Intrinsic Functions ..
  366. INTRINSIC MAX, MIN
  367. * ..
  368. * .. Executable Statements ..
  369. *
  370. * Test the input parameters
  371. *
  372. WANTU = LSAME( JOBU, 'U' )
  373. WANTV = LSAME( JOBV, 'V' )
  374. WANTQ = LSAME( JOBQ, 'Q' )
  375. *
  376. INFO = 0
  377. IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
  378. INFO = -1
  379. ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
  380. INFO = -2
  381. ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
  382. INFO = -3
  383. ELSE IF( M.LT.0 ) THEN
  384. INFO = -4
  385. ELSE IF( N.LT.0 ) THEN
  386. INFO = -5
  387. ELSE IF( P.LT.0 ) THEN
  388. INFO = -6
  389. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  390. INFO = -10
  391. ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  392. INFO = -12
  393. ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
  394. INFO = -16
  395. ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
  396. INFO = -18
  397. ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  398. INFO = -20
  399. END IF
  400. IF( INFO.NE.0 ) THEN
  401. CALL XERBLA( 'DGGSVD', -INFO )
  402. RETURN
  403. END IF
  404. *
  405. * Compute the Frobenius norm of matrices A and B
  406. *
  407. ANORM = DLANGE( '1', M, N, A, LDA, WORK )
  408. BNORM = DLANGE( '1', P, N, B, LDB, WORK )
  409. *
  410. * Get machine precision and set up threshold for determining
  411. * the effective numerical rank of the matrices A and B.
  412. *
  413. ULP = DLAMCH( 'Precision' )
  414. UNFL = DLAMCH( 'Safe Minimum' )
  415. TOLA = MAX( M, N )*MAX( ANORM, UNFL )*ULP
  416. TOLB = MAX( P, N )*MAX( BNORM, UNFL )*ULP
  417. *
  418. * Preprocessing
  419. *
  420. CALL DGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
  421. $ TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, WORK,
  422. $ WORK( N+1 ), INFO )
  423. *
  424. * Compute the GSVD of two upper "triangular" matrices
  425. *
  426. CALL DTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
  427. $ TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
  428. $ WORK, NCYCLE, INFO )
  429. *
  430. * Sort the singular values and store the pivot indices in IWORK
  431. * Copy ALPHA to WORK, then sort ALPHA in WORK
  432. *
  433. CALL DCOPY( N, ALPHA, 1, WORK, 1 )
  434. IBND = MIN( L, M-K )
  435. DO 20 I = 1, IBND
  436. *
  437. * Scan for largest ALPHA(K+I)
  438. *
  439. ISUB = I
  440. SMAX = WORK( K+I )
  441. DO 10 J = I + 1, IBND
  442. TEMP = WORK( K+J )
  443. IF( TEMP.GT.SMAX ) THEN
  444. ISUB = J
  445. SMAX = TEMP
  446. END IF
  447. 10 CONTINUE
  448. IF( ISUB.NE.I ) THEN
  449. WORK( K+ISUB ) = WORK( K+I )
  450. WORK( K+I ) = SMAX
  451. IWORK( K+I ) = K + ISUB
  452. ELSE
  453. IWORK( K+I ) = K + I
  454. END IF
  455. 20 CONTINUE
  456. *
  457. RETURN
  458. *
  459. * End of DGGSVD
  460. *
  461. END