You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgelsx.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432
  1. *> \brief <b> DGELSX solves overdetermined or underdetermined systems for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGELSX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
  22. * WORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER INFO, LDA, LDB, M, N, NRHS, RANK
  26. * DOUBLE PRECISION RCOND
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER JPVT( * )
  30. * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> This routine is deprecated and has been replaced by routine DGELSY.
  40. *>
  41. *> DGELSX computes the minimum-norm solution to a real linear least
  42. *> squares problem:
  43. *> minimize || A * X - B ||
  44. *> using a complete orthogonal factorization of A. A is an M-by-N
  45. *> matrix which may be rank-deficient.
  46. *>
  47. *> Several right hand side vectors b and solution vectors x can be
  48. *> handled in a single call; they are stored as the columns of the
  49. *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
  50. *> matrix X.
  51. *>
  52. *> The routine first computes a QR factorization with column pivoting:
  53. *> A * P = Q * [ R11 R12 ]
  54. *> [ 0 R22 ]
  55. *> with R11 defined as the largest leading submatrix whose estimated
  56. *> condition number is less than 1/RCOND. The order of R11, RANK,
  57. *> is the effective rank of A.
  58. *>
  59. *> Then, R22 is considered to be negligible, and R12 is annihilated
  60. *> by orthogonal transformations from the right, arriving at the
  61. *> complete orthogonal factorization:
  62. *> A * P = Q * [ T11 0 ] * Z
  63. *> [ 0 0 ]
  64. *> The minimum-norm solution is then
  65. *> X = P * Z**T [ inv(T11)*Q1**T*B ]
  66. *> [ 0 ]
  67. *> where Q1 consists of the first RANK columns of Q.
  68. *> \endverbatim
  69. *
  70. * Arguments:
  71. * ==========
  72. *
  73. *> \param[in] M
  74. *> \verbatim
  75. *> M is INTEGER
  76. *> The number of rows of the matrix A. M >= 0.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] N
  80. *> \verbatim
  81. *> N is INTEGER
  82. *> The number of columns of the matrix A. N >= 0.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] NRHS
  86. *> \verbatim
  87. *> NRHS is INTEGER
  88. *> The number of right hand sides, i.e., the number of
  89. *> columns of matrices B and X. NRHS >= 0.
  90. *> \endverbatim
  91. *>
  92. *> \param[in,out] A
  93. *> \verbatim
  94. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  95. *> On entry, the M-by-N matrix A.
  96. *> On exit, A has been overwritten by details of its
  97. *> complete orthogonal factorization.
  98. *> \endverbatim
  99. *>
  100. *> \param[in] LDA
  101. *> \verbatim
  102. *> LDA is INTEGER
  103. *> The leading dimension of the array A. LDA >= max(1,M).
  104. *> \endverbatim
  105. *>
  106. *> \param[in,out] B
  107. *> \verbatim
  108. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  109. *> On entry, the M-by-NRHS right hand side matrix B.
  110. *> On exit, the N-by-NRHS solution matrix X.
  111. *> If m >= n and RANK = n, the residual sum-of-squares for
  112. *> the solution in the i-th column is given by the sum of
  113. *> squares of elements N+1:M in that column.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] LDB
  117. *> \verbatim
  118. *> LDB is INTEGER
  119. *> The leading dimension of the array B. LDB >= max(1,M,N).
  120. *> \endverbatim
  121. *>
  122. *> \param[in,out] JPVT
  123. *> \verbatim
  124. *> JPVT is INTEGER array, dimension (N)
  125. *> On entry, if JPVT(i) .ne. 0, the i-th column of A is an
  126. *> initial column, otherwise it is a free column. Before
  127. *> the QR factorization of A, all initial columns are
  128. *> permuted to the leading positions; only the remaining
  129. *> free columns are moved as a result of column pivoting
  130. *> during the factorization.
  131. *> On exit, if JPVT(i) = k, then the i-th column of A*P
  132. *> was the k-th column of A.
  133. *> \endverbatim
  134. *>
  135. *> \param[in] RCOND
  136. *> \verbatim
  137. *> RCOND is DOUBLE PRECISION
  138. *> RCOND is used to determine the effective rank of A, which
  139. *> is defined as the order of the largest leading triangular
  140. *> submatrix R11 in the QR factorization with pivoting of A,
  141. *> whose estimated condition number < 1/RCOND.
  142. *> \endverbatim
  143. *>
  144. *> \param[out] RANK
  145. *> \verbatim
  146. *> RANK is INTEGER
  147. *> The effective rank of A, i.e., the order of the submatrix
  148. *> R11. This is the same as the order of the submatrix T11
  149. *> in the complete orthogonal factorization of A.
  150. *> \endverbatim
  151. *>
  152. *> \param[out] WORK
  153. *> \verbatim
  154. *> WORK is DOUBLE PRECISION array, dimension
  155. *> (max( min(M,N)+3*N, 2*min(M,N)+NRHS )),
  156. *> \endverbatim
  157. *>
  158. *> \param[out] INFO
  159. *> \verbatim
  160. *> INFO is INTEGER
  161. *> = 0: successful exit
  162. *> < 0: if INFO = -i, the i-th argument had an illegal value
  163. *> \endverbatim
  164. *
  165. * Authors:
  166. * ========
  167. *
  168. *> \author Univ. of Tennessee
  169. *> \author Univ. of California Berkeley
  170. *> \author Univ. of Colorado Denver
  171. *> \author NAG Ltd.
  172. *
  173. *> \ingroup doubleGEsolve
  174. *
  175. * =====================================================================
  176. SUBROUTINE DGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
  177. $ WORK, INFO )
  178. *
  179. * -- LAPACK driver routine --
  180. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  181. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  182. *
  183. * .. Scalar Arguments ..
  184. INTEGER INFO, LDA, LDB, M, N, NRHS, RANK
  185. DOUBLE PRECISION RCOND
  186. * ..
  187. * .. Array Arguments ..
  188. INTEGER JPVT( * )
  189. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
  190. * ..
  191. *
  192. * =====================================================================
  193. *
  194. * .. Parameters ..
  195. INTEGER IMAX, IMIN
  196. PARAMETER ( IMAX = 1, IMIN = 2 )
  197. DOUBLE PRECISION ZERO, ONE, DONE, NTDONE
  198. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, DONE = ZERO,
  199. $ NTDONE = ONE )
  200. * ..
  201. * .. Local Scalars ..
  202. INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
  203. DOUBLE PRECISION ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
  204. $ SMAXPR, SMIN, SMINPR, SMLNUM, T1, T2
  205. * ..
  206. * .. External Functions ..
  207. DOUBLE PRECISION DLAMCH, DLANGE
  208. EXTERNAL DLAMCH, DLANGE
  209. * ..
  210. * .. External Subroutines ..
  211. EXTERNAL DGEQPF, DLAIC1, DLASCL, DLASET, DLATZM, DORM2R,
  212. $ DTRSM, DTZRQF, XERBLA
  213. * ..
  214. * .. Intrinsic Functions ..
  215. INTRINSIC ABS, MAX, MIN
  216. * ..
  217. * .. Executable Statements ..
  218. *
  219. MN = MIN( M, N )
  220. ISMIN = MN + 1
  221. ISMAX = 2*MN + 1
  222. *
  223. * Test the input arguments.
  224. *
  225. INFO = 0
  226. IF( M.LT.0 ) THEN
  227. INFO = -1
  228. ELSE IF( N.LT.0 ) THEN
  229. INFO = -2
  230. ELSE IF( NRHS.LT.0 ) THEN
  231. INFO = -3
  232. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  233. INFO = -5
  234. ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  235. INFO = -7
  236. END IF
  237. *
  238. IF( INFO.NE.0 ) THEN
  239. CALL XERBLA( 'DGELSX', -INFO )
  240. RETURN
  241. END IF
  242. *
  243. * Quick return if possible
  244. *
  245. IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  246. RANK = 0
  247. RETURN
  248. END IF
  249. *
  250. * Get machine parameters
  251. *
  252. SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  253. BIGNUM = ONE / SMLNUM
  254. CALL DLABAD( SMLNUM, BIGNUM )
  255. *
  256. * Scale A, B if max elements outside range [SMLNUM,BIGNUM]
  257. *
  258. ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
  259. IASCL = 0
  260. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  261. *
  262. * Scale matrix norm up to SMLNUM
  263. *
  264. CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  265. IASCL = 1
  266. ELSE IF( ANRM.GT.BIGNUM ) THEN
  267. *
  268. * Scale matrix norm down to BIGNUM
  269. *
  270. CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  271. IASCL = 2
  272. ELSE IF( ANRM.EQ.ZERO ) THEN
  273. *
  274. * Matrix all zero. Return zero solution.
  275. *
  276. CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
  277. RANK = 0
  278. GO TO 100
  279. END IF
  280. *
  281. BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
  282. IBSCL = 0
  283. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  284. *
  285. * Scale matrix norm up to SMLNUM
  286. *
  287. CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
  288. IBSCL = 1
  289. ELSE IF( BNRM.GT.BIGNUM ) THEN
  290. *
  291. * Scale matrix norm down to BIGNUM
  292. *
  293. CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
  294. IBSCL = 2
  295. END IF
  296. *
  297. * Compute QR factorization with column pivoting of A:
  298. * A * P = Q * R
  299. *
  300. CALL DGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), INFO )
  301. *
  302. * workspace 3*N. Details of Householder rotations stored
  303. * in WORK(1:MN).
  304. *
  305. * Determine RANK using incremental condition estimation
  306. *
  307. WORK( ISMIN ) = ONE
  308. WORK( ISMAX ) = ONE
  309. SMAX = ABS( A( 1, 1 ) )
  310. SMIN = SMAX
  311. IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
  312. RANK = 0
  313. CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
  314. GO TO 100
  315. ELSE
  316. RANK = 1
  317. END IF
  318. *
  319. 10 CONTINUE
  320. IF( RANK.LT.MN ) THEN
  321. I = RANK + 1
  322. CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
  323. $ A( I, I ), SMINPR, S1, C1 )
  324. CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
  325. $ A( I, I ), SMAXPR, S2, C2 )
  326. *
  327. IF( SMAXPR*RCOND.LE.SMINPR ) THEN
  328. DO 20 I = 1, RANK
  329. WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
  330. WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
  331. 20 CONTINUE
  332. WORK( ISMIN+RANK ) = C1
  333. WORK( ISMAX+RANK ) = C2
  334. SMIN = SMINPR
  335. SMAX = SMAXPR
  336. RANK = RANK + 1
  337. GO TO 10
  338. END IF
  339. END IF
  340. *
  341. * Logically partition R = [ R11 R12 ]
  342. * [ 0 R22 ]
  343. * where R11 = R(1:RANK,1:RANK)
  344. *
  345. * [R11,R12] = [ T11, 0 ] * Y
  346. *
  347. IF( RANK.LT.N )
  348. $ CALL DTZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )
  349. *
  350. * Details of Householder rotations stored in WORK(MN+1:2*MN)
  351. *
  352. * B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
  353. *
  354. CALL DORM2R( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
  355. $ B, LDB, WORK( 2*MN+1 ), INFO )
  356. *
  357. * workspace NRHS
  358. *
  359. * B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
  360. *
  361. CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
  362. $ NRHS, ONE, A, LDA, B, LDB )
  363. *
  364. DO 40 I = RANK + 1, N
  365. DO 30 J = 1, NRHS
  366. B( I, J ) = ZERO
  367. 30 CONTINUE
  368. 40 CONTINUE
  369. *
  370. * B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS)
  371. *
  372. IF( RANK.LT.N ) THEN
  373. DO 50 I = 1, RANK
  374. CALL DLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,
  375. $ WORK( MN+I ), B( I, 1 ), B( RANK+1, 1 ), LDB,
  376. $ WORK( 2*MN+1 ) )
  377. 50 CONTINUE
  378. END IF
  379. *
  380. * workspace NRHS
  381. *
  382. * B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
  383. *
  384. DO 90 J = 1, NRHS
  385. DO 60 I = 1, N
  386. WORK( 2*MN+I ) = NTDONE
  387. 60 CONTINUE
  388. DO 80 I = 1, N
  389. IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN
  390. IF( JPVT( I ).NE.I ) THEN
  391. K = I
  392. T1 = B( K, J )
  393. T2 = B( JPVT( K ), J )
  394. 70 CONTINUE
  395. B( JPVT( K ), J ) = T1
  396. WORK( 2*MN+K ) = DONE
  397. T1 = T2
  398. K = JPVT( K )
  399. T2 = B( JPVT( K ), J )
  400. IF( JPVT( K ).NE.I )
  401. $ GO TO 70
  402. B( I, J ) = T1
  403. WORK( 2*MN+K ) = DONE
  404. END IF
  405. END IF
  406. 80 CONTINUE
  407. 90 CONTINUE
  408. *
  409. * Undo scaling
  410. *
  411. IF( IASCL.EQ.1 ) THEN
  412. CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
  413. CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
  414. $ INFO )
  415. ELSE IF( IASCL.EQ.2 ) THEN
  416. CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
  417. CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
  418. $ INFO )
  419. END IF
  420. IF( IBSCL.EQ.1 ) THEN
  421. CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
  422. ELSE IF( IBSCL.EQ.2 ) THEN
  423. CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
  424. END IF
  425. *
  426. 100 CONTINUE
  427. *
  428. RETURN
  429. *
  430. * End of DGELSX
  431. *
  432. END