You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cpbsvx.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543
  1. *> \brief <b> CPBSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CPBSVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpbsvx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpbsvx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpbsvx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
  22. * EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
  23. * WORK, RWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER EQUED, FACT, UPLO
  27. * INTEGER INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
  28. * REAL RCOND
  29. * ..
  30. * .. Array Arguments ..
  31. * REAL BERR( * ), FERR( * ), RWORK( * ), S( * )
  32. * COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  33. * $ WORK( * ), X( LDX, * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> CPBSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
  43. *> compute the solution to a complex system of linear equations
  44. *> A * X = B,
  45. *> where A is an N-by-N Hermitian positive definite band matrix and X
  46. *> and B are N-by-NRHS matrices.
  47. *>
  48. *> Error bounds on the solution and a condition estimate are also
  49. *> provided.
  50. *> \endverbatim
  51. *
  52. *> \par Description:
  53. * =================
  54. *>
  55. *> \verbatim
  56. *>
  57. *> The following steps are performed:
  58. *>
  59. *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
  60. *> the system:
  61. *> diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
  62. *> Whether or not the system will be equilibrated depends on the
  63. *> scaling of the matrix A, but if equilibration is used, A is
  64. *> overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
  65. *>
  66. *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
  67. *> factor the matrix A (after equilibration if FACT = 'E') as
  68. *> A = U**H * U, if UPLO = 'U', or
  69. *> A = L * L**H, if UPLO = 'L',
  70. *> where U is an upper triangular band matrix, and L is a lower
  71. *> triangular band matrix.
  72. *>
  73. *> 3. If the leading i-by-i principal minor is not positive definite,
  74. *> then the routine returns with INFO = i. Otherwise, the factored
  75. *> form of A is used to estimate the condition number of the matrix
  76. *> A. If the reciprocal of the condition number is less than machine
  77. *> precision, INFO = N+1 is returned as a warning, but the routine
  78. *> still goes on to solve for X and compute error bounds as
  79. *> described below.
  80. *>
  81. *> 4. The system of equations is solved for X using the factored form
  82. *> of A.
  83. *>
  84. *> 5. Iterative refinement is applied to improve the computed solution
  85. *> matrix and calculate error bounds and backward error estimates
  86. *> for it.
  87. *>
  88. *> 6. If equilibration was used, the matrix X is premultiplied by
  89. *> diag(S) so that it solves the original system before
  90. *> equilibration.
  91. *> \endverbatim
  92. *
  93. * Arguments:
  94. * ==========
  95. *
  96. *> \param[in] FACT
  97. *> \verbatim
  98. *> FACT is CHARACTER*1
  99. *> Specifies whether or not the factored form of the matrix A is
  100. *> supplied on entry, and if not, whether the matrix A should be
  101. *> equilibrated before it is factored.
  102. *> = 'F': On entry, AFB contains the factored form of A.
  103. *> If EQUED = 'Y', the matrix A has been equilibrated
  104. *> with scaling factors given by S. AB and AFB will not
  105. *> be modified.
  106. *> = 'N': The matrix A will be copied to AFB and factored.
  107. *> = 'E': The matrix A will be equilibrated if necessary, then
  108. *> copied to AFB and factored.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] UPLO
  112. *> \verbatim
  113. *> UPLO is CHARACTER*1
  114. *> = 'U': Upper triangle of A is stored;
  115. *> = 'L': Lower triangle of A is stored.
  116. *> \endverbatim
  117. *>
  118. *> \param[in] N
  119. *> \verbatim
  120. *> N is INTEGER
  121. *> The number of linear equations, i.e., the order of the
  122. *> matrix A. N >= 0.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] KD
  126. *> \verbatim
  127. *> KD is INTEGER
  128. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  129. *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
  130. *> \endverbatim
  131. *>
  132. *> \param[in] NRHS
  133. *> \verbatim
  134. *> NRHS is INTEGER
  135. *> The number of right-hand sides, i.e., the number of columns
  136. *> of the matrices B and X. NRHS >= 0.
  137. *> \endverbatim
  138. *>
  139. *> \param[in,out] AB
  140. *> \verbatim
  141. *> AB is COMPLEX array, dimension (LDAB,N)
  142. *> On entry, the upper or lower triangle of the Hermitian band
  143. *> matrix A, stored in the first KD+1 rows of the array, except
  144. *> if FACT = 'F' and EQUED = 'Y', then A must contain the
  145. *> equilibrated matrix diag(S)*A*diag(S). The j-th column of A
  146. *> is stored in the j-th column of the array AB as follows:
  147. *> if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
  148. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
  149. *> See below for further details.
  150. *>
  151. *> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  152. *> diag(S)*A*diag(S).
  153. *> \endverbatim
  154. *>
  155. *> \param[in] LDAB
  156. *> \verbatim
  157. *> LDAB is INTEGER
  158. *> The leading dimension of the array A. LDAB >= KD+1.
  159. *> \endverbatim
  160. *>
  161. *> \param[in,out] AFB
  162. *> \verbatim
  163. *> AFB is COMPLEX array, dimension (LDAFB,N)
  164. *> If FACT = 'F', then AFB is an input argument and on entry
  165. *> contains the triangular factor U or L from the Cholesky
  166. *> factorization A = U**H*U or A = L*L**H of the band matrix
  167. *> A, in the same storage format as A (see AB). If EQUED = 'Y',
  168. *> then AFB is the factored form of the equilibrated matrix A.
  169. *>
  170. *> If FACT = 'N', then AFB is an output argument and on exit
  171. *> returns the triangular factor U or L from the Cholesky
  172. *> factorization A = U**H*U or A = L*L**H.
  173. *>
  174. *> If FACT = 'E', then AFB is an output argument and on exit
  175. *> returns the triangular factor U or L from the Cholesky
  176. *> factorization A = U**H*U or A = L*L**H of the equilibrated
  177. *> matrix A (see the description of A for the form of the
  178. *> equilibrated matrix).
  179. *> \endverbatim
  180. *>
  181. *> \param[in] LDAFB
  182. *> \verbatim
  183. *> LDAFB is INTEGER
  184. *> The leading dimension of the array AFB. LDAFB >= KD+1.
  185. *> \endverbatim
  186. *>
  187. *> \param[in,out] EQUED
  188. *> \verbatim
  189. *> EQUED is CHARACTER*1
  190. *> Specifies the form of equilibration that was done.
  191. *> = 'N': No equilibration (always true if FACT = 'N').
  192. *> = 'Y': Equilibration was done, i.e., A has been replaced by
  193. *> diag(S) * A * diag(S).
  194. *> EQUED is an input argument if FACT = 'F'; otherwise, it is an
  195. *> output argument.
  196. *> \endverbatim
  197. *>
  198. *> \param[in,out] S
  199. *> \verbatim
  200. *> S is REAL array, dimension (N)
  201. *> The scale factors for A; not accessed if EQUED = 'N'. S is
  202. *> an input argument if FACT = 'F'; otherwise, S is an output
  203. *> argument. If FACT = 'F' and EQUED = 'Y', each element of S
  204. *> must be positive.
  205. *> \endverbatim
  206. *>
  207. *> \param[in,out] B
  208. *> \verbatim
  209. *> B is COMPLEX array, dimension (LDB,NRHS)
  210. *> On entry, the N-by-NRHS right hand side matrix B.
  211. *> On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
  212. *> B is overwritten by diag(S) * B.
  213. *> \endverbatim
  214. *>
  215. *> \param[in] LDB
  216. *> \verbatim
  217. *> LDB is INTEGER
  218. *> The leading dimension of the array B. LDB >= max(1,N).
  219. *> \endverbatim
  220. *>
  221. *> \param[out] X
  222. *> \verbatim
  223. *> X is COMPLEX array, dimension (LDX,NRHS)
  224. *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
  225. *> the original system of equations. Note that if EQUED = 'Y',
  226. *> A and B are modified on exit, and the solution to the
  227. *> equilibrated system is inv(diag(S))*X.
  228. *> \endverbatim
  229. *>
  230. *> \param[in] LDX
  231. *> \verbatim
  232. *> LDX is INTEGER
  233. *> The leading dimension of the array X. LDX >= max(1,N).
  234. *> \endverbatim
  235. *>
  236. *> \param[out] RCOND
  237. *> \verbatim
  238. *> RCOND is REAL
  239. *> The estimate of the reciprocal condition number of the matrix
  240. *> A after equilibration (if done). If RCOND is less than the
  241. *> machine precision (in particular, if RCOND = 0), the matrix
  242. *> is singular to working precision. This condition is
  243. *> indicated by a return code of INFO > 0.
  244. *> \endverbatim
  245. *>
  246. *> \param[out] FERR
  247. *> \verbatim
  248. *> FERR is REAL array, dimension (NRHS)
  249. *> The estimated forward error bound for each solution vector
  250. *> X(j) (the j-th column of the solution matrix X).
  251. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  252. *> is an estimated upper bound for the magnitude of the largest
  253. *> element in (X(j) - XTRUE) divided by the magnitude of the
  254. *> largest element in X(j). The estimate is as reliable as
  255. *> the estimate for RCOND, and is almost always a slight
  256. *> overestimate of the true error.
  257. *> \endverbatim
  258. *>
  259. *> \param[out] BERR
  260. *> \verbatim
  261. *> BERR is REAL array, dimension (NRHS)
  262. *> The componentwise relative backward error of each solution
  263. *> vector X(j) (i.e., the smallest relative change in
  264. *> any element of A or B that makes X(j) an exact solution).
  265. *> \endverbatim
  266. *>
  267. *> \param[out] WORK
  268. *> \verbatim
  269. *> WORK is COMPLEX array, dimension (2*N)
  270. *> \endverbatim
  271. *>
  272. *> \param[out] RWORK
  273. *> \verbatim
  274. *> RWORK is REAL array, dimension (N)
  275. *> \endverbatim
  276. *>
  277. *> \param[out] INFO
  278. *> \verbatim
  279. *> INFO is INTEGER
  280. *> = 0: successful exit
  281. *> < 0: if INFO = -i, the i-th argument had an illegal value
  282. *> > 0: if INFO = i, and i is
  283. *> <= N: the leading minor of order i of A is
  284. *> not positive definite, so the factorization
  285. *> could not be completed, and the solution has not
  286. *> been computed. RCOND = 0 is returned.
  287. *> = N+1: U is nonsingular, but RCOND is less than machine
  288. *> precision, meaning that the matrix is singular
  289. *> to working precision. Nevertheless, the
  290. *> solution and error bounds are computed because
  291. *> there are a number of situations where the
  292. *> computed solution can be more accurate than the
  293. *> value of RCOND would suggest.
  294. *> \endverbatim
  295. *
  296. * Authors:
  297. * ========
  298. *
  299. *> \author Univ. of Tennessee
  300. *> \author Univ. of California Berkeley
  301. *> \author Univ. of Colorado Denver
  302. *> \author NAG Ltd.
  303. *
  304. *> \date April 2012
  305. *
  306. *> \ingroup complexOTHERsolve
  307. *
  308. *> \par Further Details:
  309. * =====================
  310. *>
  311. *> \verbatim
  312. *>
  313. *> The band storage scheme is illustrated by the following example, when
  314. *> N = 6, KD = 2, and UPLO = 'U':
  315. *>
  316. *> Two-dimensional storage of the Hermitian matrix A:
  317. *>
  318. *> a11 a12 a13
  319. *> a22 a23 a24
  320. *> a33 a34 a35
  321. *> a44 a45 a46
  322. *> a55 a56
  323. *> (aij=conjg(aji)) a66
  324. *>
  325. *> Band storage of the upper triangle of A:
  326. *>
  327. *> * * a13 a24 a35 a46
  328. *> * a12 a23 a34 a45 a56
  329. *> a11 a22 a33 a44 a55 a66
  330. *>
  331. *> Similarly, if UPLO = 'L' the format of A is as follows:
  332. *>
  333. *> a11 a22 a33 a44 a55 a66
  334. *> a21 a32 a43 a54 a65 *
  335. *> a31 a42 a53 a64 * *
  336. *>
  337. *> Array elements marked * are not used by the routine.
  338. *> \endverbatim
  339. *>
  340. * =====================================================================
  341. SUBROUTINE CPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
  342. $ EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
  343. $ WORK, RWORK, INFO )
  344. *
  345. * -- LAPACK driver routine (version 3.7.0) --
  346. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  347. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  348. * April 2012
  349. *
  350. * .. Scalar Arguments ..
  351. CHARACTER EQUED, FACT, UPLO
  352. INTEGER INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
  353. REAL RCOND
  354. * ..
  355. * .. Array Arguments ..
  356. REAL BERR( * ), FERR( * ), RWORK( * ), S( * )
  357. COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  358. $ WORK( * ), X( LDX, * )
  359. * ..
  360. *
  361. * =====================================================================
  362. *
  363. * .. Parameters ..
  364. REAL ZERO, ONE
  365. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  366. * ..
  367. * .. Local Scalars ..
  368. LOGICAL EQUIL, NOFACT, RCEQU, UPPER
  369. INTEGER I, INFEQU, J, J1, J2
  370. REAL AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
  371. * ..
  372. * .. External Functions ..
  373. LOGICAL LSAME
  374. REAL CLANHB, SLAMCH
  375. EXTERNAL LSAME, CLANHB, SLAMCH
  376. * ..
  377. * .. External Subroutines ..
  378. EXTERNAL CCOPY, CLACPY, CLAQHB, CPBCON, CPBEQU, CPBRFS,
  379. $ CPBTRF, CPBTRS, XERBLA
  380. * ..
  381. * .. Intrinsic Functions ..
  382. INTRINSIC MAX, MIN
  383. * ..
  384. * .. Executable Statements ..
  385. *
  386. INFO = 0
  387. NOFACT = LSAME( FACT, 'N' )
  388. EQUIL = LSAME( FACT, 'E' )
  389. UPPER = LSAME( UPLO, 'U' )
  390. IF( NOFACT .OR. EQUIL ) THEN
  391. EQUED = 'N'
  392. RCEQU = .FALSE.
  393. ELSE
  394. RCEQU = LSAME( EQUED, 'Y' )
  395. SMLNUM = SLAMCH( 'Safe minimum' )
  396. BIGNUM = ONE / SMLNUM
  397. END IF
  398. *
  399. * Test the input parameters.
  400. *
  401. IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  402. $ THEN
  403. INFO = -1
  404. ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  405. INFO = -2
  406. ELSE IF( N.LT.0 ) THEN
  407. INFO = -3
  408. ELSE IF( KD.LT.0 ) THEN
  409. INFO = -4
  410. ELSE IF( NRHS.LT.0 ) THEN
  411. INFO = -5
  412. ELSE IF( LDAB.LT.KD+1 ) THEN
  413. INFO = -7
  414. ELSE IF( LDAFB.LT.KD+1 ) THEN
  415. INFO = -9
  416. ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  417. $ ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  418. INFO = -10
  419. ELSE
  420. IF( RCEQU ) THEN
  421. SMIN = BIGNUM
  422. SMAX = ZERO
  423. DO 10 J = 1, N
  424. SMIN = MIN( SMIN, S( J ) )
  425. SMAX = MAX( SMAX, S( J ) )
  426. 10 CONTINUE
  427. IF( SMIN.LE.ZERO ) THEN
  428. INFO = -11
  429. ELSE IF( N.GT.0 ) THEN
  430. SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  431. ELSE
  432. SCOND = ONE
  433. END IF
  434. END IF
  435. IF( INFO.EQ.0 ) THEN
  436. IF( LDB.LT.MAX( 1, N ) ) THEN
  437. INFO = -13
  438. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  439. INFO = -15
  440. END IF
  441. END IF
  442. END IF
  443. *
  444. IF( INFO.NE.0 ) THEN
  445. CALL XERBLA( 'CPBSVX', -INFO )
  446. RETURN
  447. END IF
  448. *
  449. IF( EQUIL ) THEN
  450. *
  451. * Compute row and column scalings to equilibrate the matrix A.
  452. *
  453. CALL CPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFEQU )
  454. IF( INFEQU.EQ.0 ) THEN
  455. *
  456. * Equilibrate the matrix.
  457. *
  458. CALL CLAQHB( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED )
  459. RCEQU = LSAME( EQUED, 'Y' )
  460. END IF
  461. END IF
  462. *
  463. * Scale the right-hand side.
  464. *
  465. IF( RCEQU ) THEN
  466. DO 30 J = 1, NRHS
  467. DO 20 I = 1, N
  468. B( I, J ) = S( I )*B( I, J )
  469. 20 CONTINUE
  470. 30 CONTINUE
  471. END IF
  472. *
  473. IF( NOFACT .OR. EQUIL ) THEN
  474. *
  475. * Compute the Cholesky factorization A = U**H *U or A = L*L**H.
  476. *
  477. IF( UPPER ) THEN
  478. DO 40 J = 1, N
  479. J1 = MAX( J-KD, 1 )
  480. CALL CCOPY( J-J1+1, AB( KD+1-J+J1, J ), 1,
  481. $ AFB( KD+1-J+J1, J ), 1 )
  482. 40 CONTINUE
  483. ELSE
  484. DO 50 J = 1, N
  485. J2 = MIN( J+KD, N )
  486. CALL CCOPY( J2-J+1, AB( 1, J ), 1, AFB( 1, J ), 1 )
  487. 50 CONTINUE
  488. END IF
  489. *
  490. CALL CPBTRF( UPLO, N, KD, AFB, LDAFB, INFO )
  491. *
  492. * Return if INFO is non-zero.
  493. *
  494. IF( INFO.GT.0 )THEN
  495. RCOND = ZERO
  496. RETURN
  497. END IF
  498. END IF
  499. *
  500. * Compute the norm of the matrix A.
  501. *
  502. ANORM = CLANHB( '1', UPLO, N, KD, AB, LDAB, RWORK )
  503. *
  504. * Compute the reciprocal of the condition number of A.
  505. *
  506. CALL CPBCON( UPLO, N, KD, AFB, LDAFB, ANORM, RCOND, WORK, RWORK,
  507. $ INFO )
  508. *
  509. * Compute the solution matrix X.
  510. *
  511. CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  512. CALL CPBTRS( UPLO, N, KD, NRHS, AFB, LDAFB, X, LDX, INFO )
  513. *
  514. * Use iterative refinement to improve the computed solution and
  515. * compute error bounds and backward error estimates for it.
  516. *
  517. CALL CPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X,
  518. $ LDX, FERR, BERR, WORK, RWORK, INFO )
  519. *
  520. * Transform the solution matrix X to a solution of the original
  521. * system.
  522. *
  523. IF( RCEQU ) THEN
  524. DO 70 J = 1, NRHS
  525. DO 60 I = 1, N
  526. X( I, J ) = S( I )*X( I, J )
  527. 60 CONTINUE
  528. 70 CONTINUE
  529. DO 80 J = 1, NRHS
  530. FERR( J ) = FERR( J ) / SCOND
  531. 80 CONTINUE
  532. END IF
  533. *
  534. * Set INFO = N+1 if the matrix is singular to working precision.
  535. *
  536. IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
  537. $ INFO = N + 1
  538. *
  539. RETURN
  540. *
  541. * End of CPBSVX
  542. *
  543. END