You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlasyf_rook.f 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900
  1. *> \brief \b ZLASYF_ROOK computes a partial factorization of a complex symmetric matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLASYF_ROOK + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlasyf_rook.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlasyf_rook.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlasyf_rook.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLASYF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, KB, LDA, LDW, N, NB
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 A( LDA, * ), W( LDW, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZLASYF_ROOK computes a partial factorization of a complex symmetric
  39. *> matrix A using the bounded Bunch-Kaufman ("rook") diagonal
  40. *> pivoting method. The partial factorization has the form:
  41. *>
  42. *> A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
  43. *> ( 0 U22 ) ( 0 D ) ( U12**T U22**T )
  44. *>
  45. *> A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L'
  46. *> ( L21 I ) ( 0 A22 ) ( 0 I )
  47. *>
  48. *> where the order of D is at most NB. The actual order is returned in
  49. *> the argument KB, and is either NB or NB-1, or N if N <= NB.
  50. *>
  51. *> ZLASYF_ROOK is an auxiliary routine called by ZSYTRF_ROOK. It uses
  52. *> blocked code (calling Level 3 BLAS) to update the submatrix
  53. *> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
  54. *> \endverbatim
  55. *
  56. * Arguments:
  57. * ==========
  58. *
  59. *> \param[in] UPLO
  60. *> \verbatim
  61. *> UPLO is CHARACTER*1
  62. *> Specifies whether the upper or lower triangular part of the
  63. *> symmetric matrix A is stored:
  64. *> = 'U': Upper triangular
  65. *> = 'L': Lower triangular
  66. *> \endverbatim
  67. *>
  68. *> \param[in] N
  69. *> \verbatim
  70. *> N is INTEGER
  71. *> The order of the matrix A. N >= 0.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] NB
  75. *> \verbatim
  76. *> NB is INTEGER
  77. *> The maximum number of columns of the matrix A that should be
  78. *> factored. NB should be at least 2 to allow for 2-by-2 pivot
  79. *> blocks.
  80. *> \endverbatim
  81. *>
  82. *> \param[out] KB
  83. *> \verbatim
  84. *> KB is INTEGER
  85. *> The number of columns of A that were actually factored.
  86. *> KB is either NB-1 or NB, or N if N <= NB.
  87. *> \endverbatim
  88. *>
  89. *> \param[in,out] A
  90. *> \verbatim
  91. *> A is COMPLEX*16 array, dimension (LDA,N)
  92. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  93. *> n-by-n upper triangular part of A contains the upper
  94. *> triangular part of the matrix A, and the strictly lower
  95. *> triangular part of A is not referenced. If UPLO = 'L', the
  96. *> leading n-by-n lower triangular part of A contains the lower
  97. *> triangular part of the matrix A, and the strictly upper
  98. *> triangular part of A is not referenced.
  99. *> On exit, A contains details of the partial factorization.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] LDA
  103. *> \verbatim
  104. *> LDA is INTEGER
  105. *> The leading dimension of the array A. LDA >= max(1,N).
  106. *> \endverbatim
  107. *>
  108. *> \param[out] IPIV
  109. *> \verbatim
  110. *> IPIV is INTEGER array, dimension (N)
  111. *> Details of the interchanges and the block structure of D.
  112. *>
  113. *> If UPLO = 'U':
  114. *> Only the last KB elements of IPIV are set.
  115. *>
  116. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  117. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  118. *>
  119. *> If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
  120. *> columns k and -IPIV(k) were interchanged and rows and
  121. *> columns k-1 and -IPIV(k-1) were inerchaged,
  122. *> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  123. *>
  124. *> If UPLO = 'L':
  125. *> Only the first KB elements of IPIV are set.
  126. *>
  127. *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
  128. *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
  129. *>
  130. *> If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
  131. *> columns k and -IPIV(k) were interchanged and rows and
  132. *> columns k+1 and -IPIV(k+1) were inerchaged,
  133. *> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  134. *> \endverbatim
  135. *>
  136. *> \param[out] W
  137. *> \verbatim
  138. *> W is COMPLEX*16 array, dimension (LDW,NB)
  139. *> \endverbatim
  140. *>
  141. *> \param[in] LDW
  142. *> \verbatim
  143. *> LDW is INTEGER
  144. *> The leading dimension of the array W. LDW >= max(1,N).
  145. *> \endverbatim
  146. *>
  147. *> \param[out] INFO
  148. *> \verbatim
  149. *> INFO is INTEGER
  150. *> = 0: successful exit
  151. *> > 0: if INFO = k, D(k,k) is exactly zero. The factorization
  152. *> has been completed, but the block diagonal matrix D is
  153. *> exactly singular.
  154. *> \endverbatim
  155. *
  156. * Authors:
  157. * ========
  158. *
  159. *> \author Univ. of Tennessee
  160. *> \author Univ. of California Berkeley
  161. *> \author Univ. of Colorado Denver
  162. *> \author NAG Ltd.
  163. *
  164. *> \date November 2013
  165. *
  166. *> \ingroup complex16SYcomputational
  167. *
  168. *> \par Contributors:
  169. * ==================
  170. *>
  171. *> \verbatim
  172. *>
  173. *> November 2013, Igor Kozachenko,
  174. *> Computer Science Division,
  175. *> University of California, Berkeley
  176. *>
  177. *> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  178. *> School of Mathematics,
  179. *> University of Manchester
  180. *>
  181. *> \endverbatim
  182. *
  183. * =====================================================================
  184. SUBROUTINE ZLASYF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW,
  185. $ INFO )
  186. *
  187. * -- LAPACK computational routine (version 3.5.0) --
  188. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  189. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  190. * November 2013
  191. *
  192. * .. Scalar Arguments ..
  193. CHARACTER UPLO
  194. INTEGER INFO, KB, LDA, LDW, N, NB
  195. * ..
  196. * .. Array Arguments ..
  197. INTEGER IPIV( * )
  198. COMPLEX*16 A( LDA, * ), W( LDW, * )
  199. * ..
  200. *
  201. * =====================================================================
  202. *
  203. * .. Parameters ..
  204. DOUBLE PRECISION ZERO, ONE
  205. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  206. DOUBLE PRECISION EIGHT, SEVTEN
  207. PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  208. COMPLEX*16 CONE, CZERO
  209. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
  210. $ CZERO = ( 0.0D+0, 0.0D+0 ) )
  211. * ..
  212. * .. Local Scalars ..
  213. LOGICAL DONE
  214. INTEGER IMAX, ITEMP, J, JB, JJ, JMAX, JP1, JP2, K, KK,
  215. $ KW, KKW, KP, KSTEP, P, II
  216. DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, ROWMAX, DTEMP, SFMIN
  217. COMPLEX*16 D11, D12, D21, D22, R1, T, Z
  218. * ..
  219. * .. External Functions ..
  220. LOGICAL LSAME
  221. INTEGER IZAMAX
  222. DOUBLE PRECISION DLAMCH
  223. EXTERNAL LSAME, IZAMAX, DLAMCH
  224. * ..
  225. * .. External Subroutines ..
  226. EXTERNAL ZCOPY, ZGEMM, ZGEMV, ZSCAL, ZSWAP
  227. * ..
  228. * .. Intrinsic Functions ..
  229. INTRINSIC ABS, MAX, MIN, SQRT, DIMAG, DBLE
  230. * ..
  231. * .. Statement Functions ..
  232. DOUBLE PRECISION CABS1
  233. * ..
  234. * .. Statement Function definitions ..
  235. CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  236. * ..
  237. * .. Executable Statements ..
  238. *
  239. INFO = 0
  240. *
  241. * Initialize ALPHA for use in choosing pivot block size.
  242. *
  243. ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  244. *
  245. * Compute machine safe minimum
  246. *
  247. SFMIN = DLAMCH( 'S' )
  248. *
  249. IF( LSAME( UPLO, 'U' ) ) THEN
  250. *
  251. * Factorize the trailing columns of A using the upper triangle
  252. * of A and working backwards, and compute the matrix W = U12*D
  253. * for use in updating A11
  254. *
  255. * K is the main loop index, decreasing from N in steps of 1 or 2
  256. *
  257. K = N
  258. 10 CONTINUE
  259. *
  260. * KW is the column of W which corresponds to column K of A
  261. *
  262. KW = NB + K - N
  263. *
  264. * Exit from loop
  265. *
  266. IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
  267. $ GO TO 30
  268. *
  269. KSTEP = 1
  270. P = K
  271. *
  272. * Copy column K of A to column KW of W and update it
  273. *
  274. CALL ZCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
  275. IF( K.LT.N )
  276. $ CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ),
  277. $ LDA, W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
  278. *
  279. * Determine rows and columns to be interchanged and whether
  280. * a 1-by-1 or 2-by-2 pivot block will be used
  281. *
  282. ABSAKK = CABS1( W( K, KW ) )
  283. *
  284. * IMAX is the row-index of the largest off-diagonal element in
  285. * column K, and COLMAX is its absolute value.
  286. * Determine both COLMAX and IMAX.
  287. *
  288. IF( K.GT.1 ) THEN
  289. IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
  290. COLMAX = CABS1( W( IMAX, KW ) )
  291. ELSE
  292. COLMAX = ZERO
  293. END IF
  294. *
  295. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  296. *
  297. * Column K is zero or underflow: set INFO and continue
  298. *
  299. IF( INFO.EQ.0 )
  300. $ INFO = K
  301. KP = K
  302. CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  303. ELSE
  304. *
  305. * ============================================================
  306. *
  307. * Test for interchange
  308. *
  309. * Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  310. * (used to handle NaN and Inf)
  311. *
  312. IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  313. *
  314. * no interchange, use 1-by-1 pivot block
  315. *
  316. KP = K
  317. *
  318. ELSE
  319. *
  320. DONE = .FALSE.
  321. *
  322. * Loop until pivot found
  323. *
  324. 12 CONTINUE
  325. *
  326. * Begin pivot search loop body
  327. *
  328. *
  329. * Copy column IMAX to column KW-1 of W and update it
  330. *
  331. CALL ZCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
  332. CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
  333. $ W( IMAX+1, KW-1 ), 1 )
  334. *
  335. IF( K.LT.N )
  336. $ CALL ZGEMV( 'No transpose', K, N-K, -CONE,
  337. $ A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
  338. $ CONE, W( 1, KW-1 ), 1 )
  339. *
  340. * JMAX is the column-index of the largest off-diagonal
  341. * element in row IMAX, and ROWMAX is its absolute value.
  342. * Determine both ROWMAX and JMAX.
  343. *
  344. IF( IMAX.NE.K ) THEN
  345. JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ),
  346. $ 1 )
  347. ROWMAX = CABS1( W( JMAX, KW-1 ) )
  348. ELSE
  349. ROWMAX = ZERO
  350. END IF
  351. *
  352. IF( IMAX.GT.1 ) THEN
  353. ITEMP = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
  354. DTEMP = CABS1( W( ITEMP, KW-1 ) )
  355. IF( DTEMP.GT.ROWMAX ) THEN
  356. ROWMAX = DTEMP
  357. JMAX = ITEMP
  358. END IF
  359. END IF
  360. *
  361. * Equivalent to testing for
  362. * CABS1( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX
  363. * (used to handle NaN and Inf)
  364. *
  365. IF( .NOT.(CABS1( W( IMAX, KW-1 ) ).LT.ALPHA*ROWMAX ) )
  366. $ THEN
  367. *
  368. * interchange rows and columns K and IMAX,
  369. * use 1-by-1 pivot block
  370. *
  371. KP = IMAX
  372. *
  373. * copy column KW-1 of W to column KW of W
  374. *
  375. CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  376. *
  377. DONE = .TRUE.
  378. *
  379. * Equivalent to testing for ROWMAX.EQ.COLMAX,
  380. * (used to handle NaN and Inf)
  381. *
  382. ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  383. $ THEN
  384. *
  385. * interchange rows and columns K-1 and IMAX,
  386. * use 2-by-2 pivot block
  387. *
  388. KP = IMAX
  389. KSTEP = 2
  390. DONE = .TRUE.
  391. ELSE
  392. *
  393. * Pivot not found: set params and repeat
  394. *
  395. P = IMAX
  396. COLMAX = ROWMAX
  397. IMAX = JMAX
  398. *
  399. * Copy updated JMAXth (next IMAXth) column to Kth of W
  400. *
  401. CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  402. *
  403. END IF
  404. *
  405. * End pivot search loop body
  406. *
  407. IF( .NOT. DONE ) GOTO 12
  408. *
  409. END IF
  410. *
  411. * ============================================================
  412. *
  413. KK = K - KSTEP + 1
  414. *
  415. * KKW is the column of W which corresponds to column KK of A
  416. *
  417. KKW = NB + KK - N
  418. *
  419. IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  420. *
  421. * Copy non-updated column K to column P
  422. *
  423. CALL ZCOPY( K-P, A( P+1, K ), 1, A( P, P+1 ), LDA )
  424. CALL ZCOPY( P, A( 1, K ), 1, A( 1, P ), 1 )
  425. *
  426. * Interchange rows K and P in last N-K+1 columns of A
  427. * and last N-K+2 columns of W
  428. *
  429. CALL ZSWAP( N-K+1, A( K, K ), LDA, A( P, K ), LDA )
  430. CALL ZSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ), LDW )
  431. END IF
  432. *
  433. * Updated column KP is already stored in column KKW of W
  434. *
  435. IF( KP.NE.KK ) THEN
  436. *
  437. * Copy non-updated column KK to column KP
  438. *
  439. A( KP, K ) = A( KK, K )
  440. CALL ZCOPY( K-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
  441. $ LDA )
  442. CALL ZCOPY( KP, A( 1, KK ), 1, A( 1, KP ), 1 )
  443. *
  444. * Interchange rows KK and KP in last N-KK+1 columns
  445. * of A and W
  446. *
  447. CALL ZSWAP( N-KK+1, A( KK, KK ), LDA, A( KP, KK ), LDA )
  448. CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
  449. $ LDW )
  450. END IF
  451. *
  452. IF( KSTEP.EQ.1 ) THEN
  453. *
  454. * 1-by-1 pivot block D(k): column KW of W now holds
  455. *
  456. * W(k) = U(k)*D(k)
  457. *
  458. * where U(k) is the k-th column of U
  459. *
  460. * Store U(k) in column k of A
  461. *
  462. CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  463. IF( K.GT.1 ) THEN
  464. IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
  465. R1 = CONE / A( K, K )
  466. CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
  467. ELSE IF( A( K, K ).NE.CZERO ) THEN
  468. DO 14 II = 1, K - 1
  469. A( II, K ) = A( II, K ) / A( K, K )
  470. 14 CONTINUE
  471. END IF
  472. END IF
  473. *
  474. ELSE
  475. *
  476. * 2-by-2 pivot block D(k): columns KW and KW-1 of W now
  477. * hold
  478. *
  479. * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  480. *
  481. * where U(k) and U(k-1) are the k-th and (k-1)-th columns
  482. * of U
  483. *
  484. IF( K.GT.2 ) THEN
  485. *
  486. * Store U(k) and U(k-1) in columns k and k-1 of A
  487. *
  488. D12 = W( K-1, KW )
  489. D11 = W( K, KW ) / D12
  490. D22 = W( K-1, KW-1 ) / D12
  491. T = CONE / ( D11*D22-CONE )
  492. DO 20 J = 1, K - 2
  493. A( J, K-1 ) = T*( (D11*W( J, KW-1 )-W( J, KW ) ) /
  494. $ D12 )
  495. A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
  496. $ D12 )
  497. 20 CONTINUE
  498. END IF
  499. *
  500. * Copy D(k) to A
  501. *
  502. A( K-1, K-1 ) = W( K-1, KW-1 )
  503. A( K-1, K ) = W( K-1, KW )
  504. A( K, K ) = W( K, KW )
  505. END IF
  506. END IF
  507. *
  508. * Store details of the interchanges in IPIV
  509. *
  510. IF( KSTEP.EQ.1 ) THEN
  511. IPIV( K ) = KP
  512. ELSE
  513. IPIV( K ) = -P
  514. IPIV( K-1 ) = -KP
  515. END IF
  516. *
  517. * Decrease K and return to the start of the main loop
  518. *
  519. K = K - KSTEP
  520. GO TO 10
  521. *
  522. 30 CONTINUE
  523. *
  524. * Update the upper triangle of A11 (= A(1:k,1:k)) as
  525. *
  526. * A11 := A11 - U12*D*U12**T = A11 - U12*W**T
  527. *
  528. * computing blocks of NB columns at a time
  529. *
  530. DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
  531. JB = MIN( NB, K-J+1 )
  532. *
  533. * Update the upper triangle of the diagonal block
  534. *
  535. DO 40 JJ = J, J + JB - 1
  536. CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
  537. $ A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
  538. $ A( J, JJ ), 1 )
  539. 40 CONTINUE
  540. *
  541. * Update the rectangular superdiagonal block
  542. *
  543. IF( J.GE.2 )
  544. $ CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB,
  545. $ N-K, -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
  546. $ CONE, A( 1, J ), LDA )
  547. 50 CONTINUE
  548. *
  549. * Put U12 in standard form by partially undoing the interchanges
  550. * in columns k+1:n
  551. *
  552. J = K + 1
  553. 60 CONTINUE
  554. *
  555. KSTEP = 1
  556. JP1 = 1
  557. JJ = J
  558. JP2 = IPIV( J )
  559. IF( JP2.LT.0 ) THEN
  560. JP2 = -JP2
  561. J = J + 1
  562. JP1 = -IPIV( J )
  563. KSTEP = 2
  564. END IF
  565. *
  566. J = J + 1
  567. IF( JP2.NE.JJ .AND. J.LE.N )
  568. $ CALL ZSWAP( N-J+1, A( JP2, J ), LDA, A( JJ, J ), LDA )
  569. JJ = J - 1
  570. IF( JP1.NE.JJ .AND. KSTEP.EQ.2 )
  571. $ CALL ZSWAP( N-J+1, A( JP1, J ), LDA, A( JJ, J ), LDA )
  572. IF( J.LE.N )
  573. $ GO TO 60
  574. *
  575. * Set KB to the number of columns factorized
  576. *
  577. KB = N - K
  578. *
  579. ELSE
  580. *
  581. * Factorize the leading columns of A using the lower triangle
  582. * of A and working forwards, and compute the matrix W = L21*D
  583. * for use in updating A22
  584. *
  585. * K is the main loop index, increasing from 1 in steps of 1 or 2
  586. *
  587. K = 1
  588. 70 CONTINUE
  589. *
  590. * Exit from loop
  591. *
  592. IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
  593. $ GO TO 90
  594. *
  595. KSTEP = 1
  596. P = K
  597. *
  598. * Copy column K of A to column K of W and update it
  599. *
  600. CALL ZCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
  601. IF( K.GT.1 )
  602. $ CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
  603. $ LDA, W( K, 1 ), LDW, CONE, W( K, K ), 1 )
  604. *
  605. * Determine rows and columns to be interchanged and whether
  606. * a 1-by-1 or 2-by-2 pivot block will be used
  607. *
  608. ABSAKK = CABS1( W( K, K ) )
  609. *
  610. * IMAX is the row-index of the largest off-diagonal element in
  611. * column K, and COLMAX is its absolute value.
  612. * Determine both COLMAX and IMAX.
  613. *
  614. IF( K.LT.N ) THEN
  615. IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
  616. COLMAX = CABS1( W( IMAX, K ) )
  617. ELSE
  618. COLMAX = ZERO
  619. END IF
  620. *
  621. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  622. *
  623. * Column K is zero or underflow: set INFO and continue
  624. *
  625. IF( INFO.EQ.0 )
  626. $ INFO = K
  627. KP = K
  628. CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  629. ELSE
  630. *
  631. * ============================================================
  632. *
  633. * Test for interchange
  634. *
  635. * Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  636. * (used to handle NaN and Inf)
  637. *
  638. IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  639. *
  640. * no interchange, use 1-by-1 pivot block
  641. *
  642. KP = K
  643. *
  644. ELSE
  645. *
  646. DONE = .FALSE.
  647. *
  648. * Loop until pivot found
  649. *
  650. 72 CONTINUE
  651. *
  652. * Begin pivot search loop body
  653. *
  654. *
  655. * Copy column IMAX to column K+1 of W and update it
  656. *
  657. CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
  658. CALL ZCOPY( N-IMAX+1, A( IMAX, IMAX ), 1,
  659. $ W( IMAX, K+1 ), 1 )
  660. IF( K.GT.1 )
  661. $ CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE,
  662. $ A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
  663. $ CONE, W( K, K+1 ), 1 )
  664. *
  665. * JMAX is the column-index of the largest off-diagonal
  666. * element in row IMAX, and ROWMAX is its absolute value.
  667. * Determine both ROWMAX and JMAX.
  668. *
  669. IF( IMAX.NE.K ) THEN
  670. JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
  671. ROWMAX = CABS1( W( JMAX, K+1 ) )
  672. ELSE
  673. ROWMAX = ZERO
  674. END IF
  675. *
  676. IF( IMAX.LT.N ) THEN
  677. ITEMP = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
  678. DTEMP = CABS1( W( ITEMP, K+1 ) )
  679. IF( DTEMP.GT.ROWMAX ) THEN
  680. ROWMAX = DTEMP
  681. JMAX = ITEMP
  682. END IF
  683. END IF
  684. *
  685. * Equivalent to testing for
  686. * CABS1( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX
  687. * (used to handle NaN and Inf)
  688. *
  689. IF( .NOT.( CABS1( W( IMAX, K+1 ) ).LT.ALPHA*ROWMAX ) )
  690. $ THEN
  691. *
  692. * interchange rows and columns K and IMAX,
  693. * use 1-by-1 pivot block
  694. *
  695. KP = IMAX
  696. *
  697. * copy column K+1 of W to column K of W
  698. *
  699. CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  700. *
  701. DONE = .TRUE.
  702. *
  703. * Equivalent to testing for ROWMAX.EQ.COLMAX,
  704. * (used to handle NaN and Inf)
  705. *
  706. ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  707. $ THEN
  708. *
  709. * interchange rows and columns K+1 and IMAX,
  710. * use 2-by-2 pivot block
  711. *
  712. KP = IMAX
  713. KSTEP = 2
  714. DONE = .TRUE.
  715. ELSE
  716. *
  717. * Pivot not found: set params and repeat
  718. *
  719. P = IMAX
  720. COLMAX = ROWMAX
  721. IMAX = JMAX
  722. *
  723. * Copy updated JMAXth (next IMAXth) column to Kth of W
  724. *
  725. CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  726. *
  727. END IF
  728. *
  729. * End pivot search loop body
  730. *
  731. IF( .NOT. DONE ) GOTO 72
  732. *
  733. END IF
  734. *
  735. * ============================================================
  736. *
  737. KK = K + KSTEP - 1
  738. *
  739. IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  740. *
  741. * Copy non-updated column K to column P
  742. *
  743. CALL ZCOPY( P-K, A( K, K ), 1, A( P, K ), LDA )
  744. CALL ZCOPY( N-P+1, A( P, K ), 1, A( P, P ), 1 )
  745. *
  746. * Interchange rows K and P in first K columns of A
  747. * and first K+1 columns of W
  748. *
  749. CALL ZSWAP( K, A( K, 1 ), LDA, A( P, 1 ), LDA )
  750. CALL ZSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
  751. END IF
  752. *
  753. * Updated column KP is already stored in column KK of W
  754. *
  755. IF( KP.NE.KK ) THEN
  756. *
  757. * Copy non-updated column KK to column KP
  758. *
  759. A( KP, K ) = A( KK, K )
  760. CALL ZCOPY( KP-K-1, A( K+1, KK ), 1, A( KP, K+1 ), LDA )
  761. CALL ZCOPY( N-KP+1, A( KP, KK ), 1, A( KP, KP ), 1 )
  762. *
  763. * Interchange rows KK and KP in first KK columns of A and W
  764. *
  765. CALL ZSWAP( KK, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  766. CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
  767. END IF
  768. *
  769. IF( KSTEP.EQ.1 ) THEN
  770. *
  771. * 1-by-1 pivot block D(k): column k of W now holds
  772. *
  773. * W(k) = L(k)*D(k)
  774. *
  775. * where L(k) is the k-th column of L
  776. *
  777. * Store L(k) in column k of A
  778. *
  779. CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  780. IF( K.LT.N ) THEN
  781. IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
  782. R1 = CONE / A( K, K )
  783. CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
  784. ELSE IF( A( K, K ).NE.CZERO ) THEN
  785. DO 74 II = K + 1, N
  786. A( II, K ) = A( II, K ) / A( K, K )
  787. 74 CONTINUE
  788. END IF
  789. END IF
  790. *
  791. ELSE
  792. *
  793. * 2-by-2 pivot block D(k): columns k and k+1 of W now hold
  794. *
  795. * ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  796. *
  797. * where L(k) and L(k+1) are the k-th and (k+1)-th columns
  798. * of L
  799. *
  800. IF( K.LT.N-1 ) THEN
  801. *
  802. * Store L(k) and L(k+1) in columns k and k+1 of A
  803. *
  804. D21 = W( K+1, K )
  805. D11 = W( K+1, K+1 ) / D21
  806. D22 = W( K, K ) / D21
  807. T = CONE / ( D11*D22-CONE )
  808. DO 80 J = K + 2, N
  809. A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
  810. $ D21 )
  811. A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
  812. $ D21 )
  813. 80 CONTINUE
  814. END IF
  815. *
  816. * Copy D(k) to A
  817. *
  818. A( K, K ) = W( K, K )
  819. A( K+1, K ) = W( K+1, K )
  820. A( K+1, K+1 ) = W( K+1, K+1 )
  821. END IF
  822. END IF
  823. *
  824. * Store details of the interchanges in IPIV
  825. *
  826. IF( KSTEP.EQ.1 ) THEN
  827. IPIV( K ) = KP
  828. ELSE
  829. IPIV( K ) = -P
  830. IPIV( K+1 ) = -KP
  831. END IF
  832. *
  833. * Increase K and return to the start of the main loop
  834. *
  835. K = K + KSTEP
  836. GO TO 70
  837. *
  838. 90 CONTINUE
  839. *
  840. * Update the lower triangle of A22 (= A(k:n,k:n)) as
  841. *
  842. * A22 := A22 - L21*D*L21**T = A22 - L21*W**T
  843. *
  844. * computing blocks of NB columns at a time
  845. *
  846. DO 110 J = K, N, NB
  847. JB = MIN( NB, N-J+1 )
  848. *
  849. * Update the lower triangle of the diagonal block
  850. *
  851. DO 100 JJ = J, J + JB - 1
  852. CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
  853. $ A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
  854. $ A( JJ, JJ ), 1 )
  855. 100 CONTINUE
  856. *
  857. * Update the rectangular subdiagonal block
  858. *
  859. IF( J+JB.LE.N )
  860. $ CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
  861. $ K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ), LDW,
  862. $ CONE, A( J+JB, J ), LDA )
  863. 110 CONTINUE
  864. *
  865. * Put L21 in standard form by partially undoing the interchanges
  866. * in columns 1:k-1
  867. *
  868. J = K - 1
  869. 120 CONTINUE
  870. *
  871. KSTEP = 1
  872. JP1 = 1
  873. JJ = J
  874. JP2 = IPIV( J )
  875. IF( JP2.LT.0 ) THEN
  876. JP2 = -JP2
  877. J = J - 1
  878. JP1 = -IPIV( J )
  879. KSTEP = 2
  880. END IF
  881. *
  882. J = J - 1
  883. IF( JP2.NE.JJ .AND. J.GE.1 )
  884. $ CALL ZSWAP( J, A( JP2, 1 ), LDA, A( JJ, 1 ), LDA )
  885. JJ = J + 1
  886. IF( JP1.NE.JJ .AND. KSTEP.EQ.2 )
  887. $ CALL ZSWAP( J, A( JP1, 1 ), LDA, A( JJ, 1 ), LDA )
  888. IF( J.GE.1 )
  889. $ GO TO 120
  890. *
  891. * Set KB to the number of columns factorized
  892. *
  893. KB = K - 1
  894. *
  895. END IF
  896. RETURN
  897. *
  898. * End of ZLASYF_ROOK
  899. *
  900. END