You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slarfb.f 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712
  1. *> \brief \b SLARFB applies a block reflector or its transpose to a general rectangular matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLARFB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarfb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarfb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarfb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
  22. * T, LDT, C, LDC, WORK, LDWORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIRECT, SIDE, STOREV, TRANS
  26. * INTEGER K, LDC, LDT, LDV, LDWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL C( LDC, * ), T( LDT, * ), V( LDV, * ),
  30. * $ WORK( LDWORK, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> SLARFB applies a real block reflector H or its transpose H**T to a
  40. *> real m by n matrix C, from either the left or the right.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] SIDE
  47. *> \verbatim
  48. *> SIDE is CHARACTER*1
  49. *> = 'L': apply H or H**T from the Left
  50. *> = 'R': apply H or H**T from the Right
  51. *> \endverbatim
  52. *>
  53. *> \param[in] TRANS
  54. *> \verbatim
  55. *> TRANS is CHARACTER*1
  56. *> = 'N': apply H (No transpose)
  57. *> = 'T': apply H**T (Transpose)
  58. *> \endverbatim
  59. *>
  60. *> \param[in] DIRECT
  61. *> \verbatim
  62. *> DIRECT is CHARACTER*1
  63. *> Indicates how H is formed from a product of elementary
  64. *> reflectors
  65. *> = 'F': H = H(1) H(2) . . . H(k) (Forward)
  66. *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
  67. *> \endverbatim
  68. *>
  69. *> \param[in] STOREV
  70. *> \verbatim
  71. *> STOREV is CHARACTER*1
  72. *> Indicates how the vectors which define the elementary
  73. *> reflectors are stored:
  74. *> = 'C': Columnwise
  75. *> = 'R': Rowwise
  76. *> \endverbatim
  77. *>
  78. *> \param[in] M
  79. *> \verbatim
  80. *> M is INTEGER
  81. *> The number of rows of the matrix C.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] N
  85. *> \verbatim
  86. *> N is INTEGER
  87. *> The number of columns of the matrix C.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] K
  91. *> \verbatim
  92. *> K is INTEGER
  93. *> The order of the matrix T (= the number of elementary
  94. *> reflectors whose product defines the block reflector).
  95. *> If SIDE = 'L', M >= K >= 0;
  96. *> if SIDE = 'R', N >= K >= 0.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] V
  100. *> \verbatim
  101. *> V is REAL array, dimension
  102. *> (LDV,K) if STOREV = 'C'
  103. *> (LDV,M) if STOREV = 'R' and SIDE = 'L'
  104. *> (LDV,N) if STOREV = 'R' and SIDE = 'R'
  105. *> The matrix V. See Further Details.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] LDV
  109. *> \verbatim
  110. *> LDV is INTEGER
  111. *> The leading dimension of the array V.
  112. *> If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
  113. *> if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
  114. *> if STOREV = 'R', LDV >= K.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] T
  118. *> \verbatim
  119. *> T is REAL array, dimension (LDT,K)
  120. *> The triangular k by k matrix T in the representation of the
  121. *> block reflector.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] LDT
  125. *> \verbatim
  126. *> LDT is INTEGER
  127. *> The leading dimension of the array T. LDT >= K.
  128. *> \endverbatim
  129. *>
  130. *> \param[in,out] C
  131. *> \verbatim
  132. *> C is REAL array, dimension (LDC,N)
  133. *> On entry, the m by n matrix C.
  134. *> On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T.
  135. *> \endverbatim
  136. *>
  137. *> \param[in] LDC
  138. *> \verbatim
  139. *> LDC is INTEGER
  140. *> The leading dimension of the array C. LDC >= max(1,M).
  141. *> \endverbatim
  142. *>
  143. *> \param[out] WORK
  144. *> \verbatim
  145. *> WORK is REAL array, dimension (LDWORK,K)
  146. *> \endverbatim
  147. *>
  148. *> \param[in] LDWORK
  149. *> \verbatim
  150. *> LDWORK is INTEGER
  151. *> The leading dimension of the array WORK.
  152. *> If SIDE = 'L', LDWORK >= max(1,N);
  153. *> if SIDE = 'R', LDWORK >= max(1,M).
  154. *> \endverbatim
  155. *
  156. * Authors:
  157. * ========
  158. *
  159. *> \author Univ. of Tennessee
  160. *> \author Univ. of California Berkeley
  161. *> \author Univ. of Colorado Denver
  162. *> \author NAG Ltd.
  163. *
  164. *> \date June 2013
  165. *
  166. *> \ingroup realOTHERauxiliary
  167. *
  168. *> \par Further Details:
  169. * =====================
  170. *>
  171. *> \verbatim
  172. *>
  173. *> The shape of the matrix V and the storage of the vectors which define
  174. *> the H(i) is best illustrated by the following example with n = 5 and
  175. *> k = 3. The elements equal to 1 are not stored; the corresponding
  176. *> array elements are modified but restored on exit. The rest of the
  177. *> array is not used.
  178. *>
  179. *> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
  180. *>
  181. *> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
  182. *> ( v1 1 ) ( 1 v2 v2 v2 )
  183. *> ( v1 v2 1 ) ( 1 v3 v3 )
  184. *> ( v1 v2 v3 )
  185. *> ( v1 v2 v3 )
  186. *>
  187. *> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
  188. *>
  189. *> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
  190. *> ( v1 v2 v3 ) ( v2 v2 v2 1 )
  191. *> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
  192. *> ( 1 v3 )
  193. *> ( 1 )
  194. *> \endverbatim
  195. *>
  196. * =====================================================================
  197. SUBROUTINE SLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
  198. $ T, LDT, C, LDC, WORK, LDWORK )
  199. *
  200. * -- LAPACK auxiliary routine (version 3.7.0) --
  201. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  202. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  203. * June 2013
  204. *
  205. * .. Scalar Arguments ..
  206. CHARACTER DIRECT, SIDE, STOREV, TRANS
  207. INTEGER K, LDC, LDT, LDV, LDWORK, M, N
  208. * ..
  209. * .. Array Arguments ..
  210. REAL C( LDC, * ), T( LDT, * ), V( LDV, * ),
  211. $ WORK( LDWORK, * )
  212. * ..
  213. *
  214. * =====================================================================
  215. *
  216. * .. Parameters ..
  217. REAL ONE
  218. PARAMETER ( ONE = 1.0E+0 )
  219. * ..
  220. * .. Local Scalars ..
  221. CHARACTER TRANST
  222. INTEGER I, J
  223. * ..
  224. * .. External Functions ..
  225. LOGICAL LSAME
  226. EXTERNAL LSAME
  227. * ..
  228. * .. External Subroutines ..
  229. EXTERNAL SCOPY, SGEMM, STRMM
  230. * ..
  231. * .. Executable Statements ..
  232. *
  233. * Quick return if possible
  234. *
  235. IF( M.LE.0 .OR. N.LE.0 )
  236. $ RETURN
  237. *
  238. IF( LSAME( TRANS, 'N' ) ) THEN
  239. TRANST = 'T'
  240. ELSE
  241. TRANST = 'N'
  242. END IF
  243. *
  244. IF( LSAME( STOREV, 'C' ) ) THEN
  245. *
  246. IF( LSAME( DIRECT, 'F' ) ) THEN
  247. *
  248. * Let V = ( V1 ) (first K rows)
  249. * ( V2 )
  250. * where V1 is unit lower triangular.
  251. *
  252. IF( LSAME( SIDE, 'L' ) ) THEN
  253. *
  254. * Form H * C or H**T * C where C = ( C1 )
  255. * ( C2 )
  256. *
  257. * W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK)
  258. *
  259. * W := C1**T
  260. *
  261. DO 10 J = 1, K
  262. CALL SCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  263. 10 CONTINUE
  264. *
  265. * W := W * V1
  266. *
  267. CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
  268. $ K, ONE, V, LDV, WORK, LDWORK )
  269. IF( M.GT.K ) THEN
  270. *
  271. * W := W + C2**T * V2
  272. *
  273. CALL SGEMM( 'Transpose', 'No transpose', N, K, M-K,
  274. $ ONE, C( K+1, 1 ), LDC, V( K+1, 1 ), LDV,
  275. $ ONE, WORK, LDWORK )
  276. END IF
  277. *
  278. * W := W * T**T or W * T
  279. *
  280. CALL STRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
  281. $ ONE, T, LDT, WORK, LDWORK )
  282. *
  283. * C := C - V * W**T
  284. *
  285. IF( M.GT.K ) THEN
  286. *
  287. * C2 := C2 - V2 * W**T
  288. *
  289. CALL SGEMM( 'No transpose', 'Transpose', M-K, N, K,
  290. $ -ONE, V( K+1, 1 ), LDV, WORK, LDWORK, ONE,
  291. $ C( K+1, 1 ), LDC )
  292. END IF
  293. *
  294. * W := W * V1**T
  295. *
  296. CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', N, K,
  297. $ ONE, V, LDV, WORK, LDWORK )
  298. *
  299. * C1 := C1 - W**T
  300. *
  301. DO 30 J = 1, K
  302. DO 20 I = 1, N
  303. C( J, I ) = C( J, I ) - WORK( I, J )
  304. 20 CONTINUE
  305. 30 CONTINUE
  306. *
  307. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  308. *
  309. * Form C * H or C * H**T where C = ( C1 C2 )
  310. *
  311. * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
  312. *
  313. * W := C1
  314. *
  315. DO 40 J = 1, K
  316. CALL SCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
  317. 40 CONTINUE
  318. *
  319. * W := W * V1
  320. *
  321. CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
  322. $ K, ONE, V, LDV, WORK, LDWORK )
  323. IF( N.GT.K ) THEN
  324. *
  325. * W := W + C2 * V2
  326. *
  327. CALL SGEMM( 'No transpose', 'No transpose', M, K, N-K,
  328. $ ONE, C( 1, K+1 ), LDC, V( K+1, 1 ), LDV,
  329. $ ONE, WORK, LDWORK )
  330. END IF
  331. *
  332. * W := W * T or W * T**T
  333. *
  334. CALL STRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
  335. $ ONE, T, LDT, WORK, LDWORK )
  336. *
  337. * C := C - W * V**T
  338. *
  339. IF( N.GT.K ) THEN
  340. *
  341. * C2 := C2 - W * V2**T
  342. *
  343. CALL SGEMM( 'No transpose', 'Transpose', M, N-K, K,
  344. $ -ONE, WORK, LDWORK, V( K+1, 1 ), LDV, ONE,
  345. $ C( 1, K+1 ), LDC )
  346. END IF
  347. *
  348. * W := W * V1**T
  349. *
  350. CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', M, K,
  351. $ ONE, V, LDV, WORK, LDWORK )
  352. *
  353. * C1 := C1 - W
  354. *
  355. DO 60 J = 1, K
  356. DO 50 I = 1, M
  357. C( I, J ) = C( I, J ) - WORK( I, J )
  358. 50 CONTINUE
  359. 60 CONTINUE
  360. END IF
  361. *
  362. ELSE
  363. *
  364. * Let V = ( V1 )
  365. * ( V2 ) (last K rows)
  366. * where V2 is unit upper triangular.
  367. *
  368. IF( LSAME( SIDE, 'L' ) ) THEN
  369. *
  370. * Form H * C or H**T * C where C = ( C1 )
  371. * ( C2 )
  372. *
  373. * W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK)
  374. *
  375. * W := C2**T
  376. *
  377. DO 70 J = 1, K
  378. CALL SCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
  379. 70 CONTINUE
  380. *
  381. * W := W * V2
  382. *
  383. CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
  384. $ K, ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK )
  385. IF( M.GT.K ) THEN
  386. *
  387. * W := W + C1**T * V1
  388. *
  389. CALL SGEMM( 'Transpose', 'No transpose', N, K, M-K,
  390. $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
  391. END IF
  392. *
  393. * W := W * T**T or W * T
  394. *
  395. CALL STRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
  396. $ ONE, T, LDT, WORK, LDWORK )
  397. *
  398. * C := C - V * W**T
  399. *
  400. IF( M.GT.K ) THEN
  401. *
  402. * C1 := C1 - V1 * W**T
  403. *
  404. CALL SGEMM( 'No transpose', 'Transpose', M-K, N, K,
  405. $ -ONE, V, LDV, WORK, LDWORK, ONE, C, LDC )
  406. END IF
  407. *
  408. * W := W * V2**T
  409. *
  410. CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', N, K,
  411. $ ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK )
  412. *
  413. * C2 := C2 - W**T
  414. *
  415. DO 90 J = 1, K
  416. DO 80 I = 1, N
  417. C( M-K+J, I ) = C( M-K+J, I ) - WORK( I, J )
  418. 80 CONTINUE
  419. 90 CONTINUE
  420. *
  421. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  422. *
  423. * Form C * H or C * H' where C = ( C1 C2 )
  424. *
  425. * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
  426. *
  427. * W := C2
  428. *
  429. DO 100 J = 1, K
  430. CALL SCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
  431. 100 CONTINUE
  432. *
  433. * W := W * V2
  434. *
  435. CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
  436. $ K, ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK )
  437. IF( N.GT.K ) THEN
  438. *
  439. * W := W + C1 * V1
  440. *
  441. CALL SGEMM( 'No transpose', 'No transpose', M, K, N-K,
  442. $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
  443. END IF
  444. *
  445. * W := W * T or W * T**T
  446. *
  447. CALL STRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
  448. $ ONE, T, LDT, WORK, LDWORK )
  449. *
  450. * C := C - W * V**T
  451. *
  452. IF( N.GT.K ) THEN
  453. *
  454. * C1 := C1 - W * V1**T
  455. *
  456. CALL SGEMM( 'No transpose', 'Transpose', M, N-K, K,
  457. $ -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC )
  458. END IF
  459. *
  460. * W := W * V2**T
  461. *
  462. CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', M, K,
  463. $ ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK )
  464. *
  465. * C2 := C2 - W
  466. *
  467. DO 120 J = 1, K
  468. DO 110 I = 1, M
  469. C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
  470. 110 CONTINUE
  471. 120 CONTINUE
  472. END IF
  473. END IF
  474. *
  475. ELSE IF( LSAME( STOREV, 'R' ) ) THEN
  476. *
  477. IF( LSAME( DIRECT, 'F' ) ) THEN
  478. *
  479. * Let V = ( V1 V2 ) (V1: first K columns)
  480. * where V1 is unit upper triangular.
  481. *
  482. IF( LSAME( SIDE, 'L' ) ) THEN
  483. *
  484. * Form H * C or H**T * C where C = ( C1 )
  485. * ( C2 )
  486. *
  487. * W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK)
  488. *
  489. * W := C1**T
  490. *
  491. DO 130 J = 1, K
  492. CALL SCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  493. 130 CONTINUE
  494. *
  495. * W := W * V1**T
  496. *
  497. CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', N, K,
  498. $ ONE, V, LDV, WORK, LDWORK )
  499. IF( M.GT.K ) THEN
  500. *
  501. * W := W + C2**T * V2**T
  502. *
  503. CALL SGEMM( 'Transpose', 'Transpose', N, K, M-K, ONE,
  504. $ C( K+1, 1 ), LDC, V( 1, K+1 ), LDV, ONE,
  505. $ WORK, LDWORK )
  506. END IF
  507. *
  508. * W := W * T**T or W * T
  509. *
  510. CALL STRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
  511. $ ONE, T, LDT, WORK, LDWORK )
  512. *
  513. * C := C - V**T * W**T
  514. *
  515. IF( M.GT.K ) THEN
  516. *
  517. * C2 := C2 - V2**T * W**T
  518. *
  519. CALL SGEMM( 'Transpose', 'Transpose', M-K, N, K, -ONE,
  520. $ V( 1, K+1 ), LDV, WORK, LDWORK, ONE,
  521. $ C( K+1, 1 ), LDC )
  522. END IF
  523. *
  524. * W := W * V1
  525. *
  526. CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
  527. $ K, ONE, V, LDV, WORK, LDWORK )
  528. *
  529. * C1 := C1 - W**T
  530. *
  531. DO 150 J = 1, K
  532. DO 140 I = 1, N
  533. C( J, I ) = C( J, I ) - WORK( I, J )
  534. 140 CONTINUE
  535. 150 CONTINUE
  536. *
  537. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  538. *
  539. * Form C * H or C * H**T where C = ( C1 C2 )
  540. *
  541. * W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK)
  542. *
  543. * W := C1
  544. *
  545. DO 160 J = 1, K
  546. CALL SCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
  547. 160 CONTINUE
  548. *
  549. * W := W * V1**T
  550. *
  551. CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', M, K,
  552. $ ONE, V, LDV, WORK, LDWORK )
  553. IF( N.GT.K ) THEN
  554. *
  555. * W := W + C2 * V2**T
  556. *
  557. CALL SGEMM( 'No transpose', 'Transpose', M, K, N-K,
  558. $ ONE, C( 1, K+1 ), LDC, V( 1, K+1 ), LDV,
  559. $ ONE, WORK, LDWORK )
  560. END IF
  561. *
  562. * W := W * T or W * T**T
  563. *
  564. CALL STRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
  565. $ ONE, T, LDT, WORK, LDWORK )
  566. *
  567. * C := C - W * V
  568. *
  569. IF( N.GT.K ) THEN
  570. *
  571. * C2 := C2 - W * V2
  572. *
  573. CALL SGEMM( 'No transpose', 'No transpose', M, N-K, K,
  574. $ -ONE, WORK, LDWORK, V( 1, K+1 ), LDV, ONE,
  575. $ C( 1, K+1 ), LDC )
  576. END IF
  577. *
  578. * W := W * V1
  579. *
  580. CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
  581. $ K, ONE, V, LDV, WORK, LDWORK )
  582. *
  583. * C1 := C1 - W
  584. *
  585. DO 180 J = 1, K
  586. DO 170 I = 1, M
  587. C( I, J ) = C( I, J ) - WORK( I, J )
  588. 170 CONTINUE
  589. 180 CONTINUE
  590. *
  591. END IF
  592. *
  593. ELSE
  594. *
  595. * Let V = ( V1 V2 ) (V2: last K columns)
  596. * where V2 is unit lower triangular.
  597. *
  598. IF( LSAME( SIDE, 'L' ) ) THEN
  599. *
  600. * Form H * C or H**T * C where C = ( C1 )
  601. * ( C2 )
  602. *
  603. * W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK)
  604. *
  605. * W := C2**T
  606. *
  607. DO 190 J = 1, K
  608. CALL SCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
  609. 190 CONTINUE
  610. *
  611. * W := W * V2**T
  612. *
  613. CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', N, K,
  614. $ ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK )
  615. IF( M.GT.K ) THEN
  616. *
  617. * W := W + C1**T * V1**T
  618. *
  619. CALL SGEMM( 'Transpose', 'Transpose', N, K, M-K, ONE,
  620. $ C, LDC, V, LDV, ONE, WORK, LDWORK )
  621. END IF
  622. *
  623. * W := W * T**T or W * T
  624. *
  625. CALL STRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
  626. $ ONE, T, LDT, WORK, LDWORK )
  627. *
  628. * C := C - V**T * W**T
  629. *
  630. IF( M.GT.K ) THEN
  631. *
  632. * C1 := C1 - V1**T * W**T
  633. *
  634. CALL SGEMM( 'Transpose', 'Transpose', M-K, N, K, -ONE,
  635. $ V, LDV, WORK, LDWORK, ONE, C, LDC )
  636. END IF
  637. *
  638. * W := W * V2
  639. *
  640. CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
  641. $ K, ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK )
  642. *
  643. * C2 := C2 - W**T
  644. *
  645. DO 210 J = 1, K
  646. DO 200 I = 1, N
  647. C( M-K+J, I ) = C( M-K+J, I ) - WORK( I, J )
  648. 200 CONTINUE
  649. 210 CONTINUE
  650. *
  651. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  652. *
  653. * Form C * H or C * H**T where C = ( C1 C2 )
  654. *
  655. * W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK)
  656. *
  657. * W := C2
  658. *
  659. DO 220 J = 1, K
  660. CALL SCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
  661. 220 CONTINUE
  662. *
  663. * W := W * V2**T
  664. *
  665. CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', M, K,
  666. $ ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK )
  667. IF( N.GT.K ) THEN
  668. *
  669. * W := W + C1 * V1**T
  670. *
  671. CALL SGEMM( 'No transpose', 'Transpose', M, K, N-K,
  672. $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
  673. END IF
  674. *
  675. * W := W * T or W * T**T
  676. *
  677. CALL STRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
  678. $ ONE, T, LDT, WORK, LDWORK )
  679. *
  680. * C := C - W * V
  681. *
  682. IF( N.GT.K ) THEN
  683. *
  684. * C1 := C1 - W * V1
  685. *
  686. CALL SGEMM( 'No transpose', 'No transpose', M, N-K, K,
  687. $ -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC )
  688. END IF
  689. *
  690. * W := W * V2
  691. *
  692. CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
  693. $ K, ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK )
  694. *
  695. * C1 := C1 - W
  696. *
  697. DO 240 J = 1, K
  698. DO 230 I = 1, M
  699. C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
  700. 230 CONTINUE
  701. 240 CONTINUE
  702. *
  703. END IF
  704. *
  705. END IF
  706. END IF
  707. *
  708. RETURN
  709. *
  710. * End of SLARFB
  711. *
  712. END