You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dstevx.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464
  1. *> \brief <b> DSTEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSTEVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstevx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstevx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstevx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSTEVX( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
  22. * M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBZ, RANGE
  26. * INTEGER IL, INFO, IU, LDZ, M, N
  27. * DOUBLE PRECISION ABSTOL, VL, VU
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER IFAIL( * ), IWORK( * )
  31. * DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> DSTEVX computes selected eigenvalues and, optionally, eigenvectors
  41. *> of a real symmetric tridiagonal matrix A. Eigenvalues and
  42. *> eigenvectors can be selected by specifying either a range of values
  43. *> or a range of indices for the desired eigenvalues.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] JOBZ
  50. *> \verbatim
  51. *> JOBZ is CHARACTER*1
  52. *> = 'N': Compute eigenvalues only;
  53. *> = 'V': Compute eigenvalues and eigenvectors.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] RANGE
  57. *> \verbatim
  58. *> RANGE is CHARACTER*1
  59. *> = 'A': all eigenvalues will be found.
  60. *> = 'V': all eigenvalues in the half-open interval (VL,VU]
  61. *> will be found.
  62. *> = 'I': the IL-th through IU-th eigenvalues will be found.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] N
  66. *> \verbatim
  67. *> N is INTEGER
  68. *> The order of the matrix. N >= 0.
  69. *> \endverbatim
  70. *>
  71. *> \param[in,out] D
  72. *> \verbatim
  73. *> D is DOUBLE PRECISION array, dimension (N)
  74. *> On entry, the n diagonal elements of the tridiagonal matrix
  75. *> A.
  76. *> On exit, D may be multiplied by a constant factor chosen
  77. *> to avoid over/underflow in computing the eigenvalues.
  78. *> \endverbatim
  79. *>
  80. *> \param[in,out] E
  81. *> \verbatim
  82. *> E is DOUBLE PRECISION array, dimension (max(1,N-1))
  83. *> On entry, the (n-1) subdiagonal elements of the tridiagonal
  84. *> matrix A in elements 1 to N-1 of E.
  85. *> On exit, E may be multiplied by a constant factor chosen
  86. *> to avoid over/underflow in computing the eigenvalues.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] VL
  90. *> \verbatim
  91. *> VL is DOUBLE PRECISION
  92. *> If RANGE='V', the lower bound of the interval to
  93. *> be searched for eigenvalues. VL < VU.
  94. *> Not referenced if RANGE = 'A' or 'I'.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] VU
  98. *> \verbatim
  99. *> VU is DOUBLE PRECISION
  100. *> If RANGE='V', the upper bound of the interval to
  101. *> be searched for eigenvalues. VL < VU.
  102. *> Not referenced if RANGE = 'A' or 'I'.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] IL
  106. *> \verbatim
  107. *> IL is INTEGER
  108. *> If RANGE='I', the index of the
  109. *> smallest eigenvalue to be returned.
  110. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  111. *> Not referenced if RANGE = 'A' or 'V'.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] IU
  115. *> \verbatim
  116. *> IU is INTEGER
  117. *> If RANGE='I', the index of the
  118. *> largest eigenvalue to be returned.
  119. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  120. *> Not referenced if RANGE = 'A' or 'V'.
  121. *> \endverbatim
  122. *>
  123. *> \param[in] ABSTOL
  124. *> \verbatim
  125. *> ABSTOL is DOUBLE PRECISION
  126. *> The absolute error tolerance for the eigenvalues.
  127. *> An approximate eigenvalue is accepted as converged
  128. *> when it is determined to lie in an interval [a,b]
  129. *> of width less than or equal to
  130. *>
  131. *> ABSTOL + EPS * max( |a|,|b| ) ,
  132. *>
  133. *> where EPS is the machine precision. If ABSTOL is less
  134. *> than or equal to zero, then EPS*|T| will be used in
  135. *> its place, where |T| is the 1-norm of the tridiagonal
  136. *> matrix.
  137. *>
  138. *> Eigenvalues will be computed most accurately when ABSTOL is
  139. *> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  140. *> If this routine returns with INFO>0, indicating that some
  141. *> eigenvectors did not converge, try setting ABSTOL to
  142. *> 2*DLAMCH('S').
  143. *>
  144. *> See "Computing Small Singular Values of Bidiagonal Matrices
  145. *> with Guaranteed High Relative Accuracy," by Demmel and
  146. *> Kahan, LAPACK Working Note #3.
  147. *> \endverbatim
  148. *>
  149. *> \param[out] M
  150. *> \verbatim
  151. *> M is INTEGER
  152. *> The total number of eigenvalues found. 0 <= M <= N.
  153. *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  154. *> \endverbatim
  155. *>
  156. *> \param[out] W
  157. *> \verbatim
  158. *> W is DOUBLE PRECISION array, dimension (N)
  159. *> The first M elements contain the selected eigenvalues in
  160. *> ascending order.
  161. *> \endverbatim
  162. *>
  163. *> \param[out] Z
  164. *> \verbatim
  165. *> Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
  166. *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  167. *> contain the orthonormal eigenvectors of the matrix A
  168. *> corresponding to the selected eigenvalues, with the i-th
  169. *> column of Z holding the eigenvector associated with W(i).
  170. *> If an eigenvector fails to converge (INFO > 0), then that
  171. *> column of Z contains the latest approximation to the
  172. *> eigenvector, and the index of the eigenvector is returned
  173. *> in IFAIL. If JOBZ = 'N', then Z is not referenced.
  174. *> Note: the user must ensure that at least max(1,M) columns are
  175. *> supplied in the array Z; if RANGE = 'V', the exact value of M
  176. *> is not known in advance and an upper bound must be used.
  177. *> \endverbatim
  178. *>
  179. *> \param[in] LDZ
  180. *> \verbatim
  181. *> LDZ is INTEGER
  182. *> The leading dimension of the array Z. LDZ >= 1, and if
  183. *> JOBZ = 'V', LDZ >= max(1,N).
  184. *> \endverbatim
  185. *>
  186. *> \param[out] WORK
  187. *> \verbatim
  188. *> WORK is DOUBLE PRECISION array, dimension (5*N)
  189. *> \endverbatim
  190. *>
  191. *> \param[out] IWORK
  192. *> \verbatim
  193. *> IWORK is INTEGER array, dimension (5*N)
  194. *> \endverbatim
  195. *>
  196. *> \param[out] IFAIL
  197. *> \verbatim
  198. *> IFAIL is INTEGER array, dimension (N)
  199. *> If JOBZ = 'V', then if INFO = 0, the first M elements of
  200. *> IFAIL are zero. If INFO > 0, then IFAIL contains the
  201. *> indices of the eigenvectors that failed to converge.
  202. *> If JOBZ = 'N', then IFAIL is not referenced.
  203. *> \endverbatim
  204. *>
  205. *> \param[out] INFO
  206. *> \verbatim
  207. *> INFO is INTEGER
  208. *> = 0: successful exit
  209. *> < 0: if INFO = -i, the i-th argument had an illegal value
  210. *> > 0: if INFO = i, then i eigenvectors failed to converge.
  211. *> Their indices are stored in array IFAIL.
  212. *> \endverbatim
  213. *
  214. * Authors:
  215. * ========
  216. *
  217. *> \author Univ. of Tennessee
  218. *> \author Univ. of California Berkeley
  219. *> \author Univ. of Colorado Denver
  220. *> \author NAG Ltd.
  221. *
  222. *> \date June 2016
  223. *
  224. *> \ingroup doubleOTHEReigen
  225. *
  226. * =====================================================================
  227. SUBROUTINE DSTEVX( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
  228. $ M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
  229. *
  230. * -- LAPACK driver routine (version 3.7.0) --
  231. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  232. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  233. * June 2016
  234. *
  235. * .. Scalar Arguments ..
  236. CHARACTER JOBZ, RANGE
  237. INTEGER IL, INFO, IU, LDZ, M, N
  238. DOUBLE PRECISION ABSTOL, VL, VU
  239. * ..
  240. * .. Array Arguments ..
  241. INTEGER IFAIL( * ), IWORK( * )
  242. DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
  243. * ..
  244. *
  245. * =====================================================================
  246. *
  247. * .. Parameters ..
  248. DOUBLE PRECISION ZERO, ONE
  249. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  250. * ..
  251. * .. Local Scalars ..
  252. LOGICAL ALLEIG, INDEIG, TEST, VALEIG, WANTZ
  253. CHARACTER ORDER
  254. INTEGER I, IMAX, INDIBL, INDISP, INDIWO, INDWRK,
  255. $ ISCALE, ITMP1, J, JJ, NSPLIT
  256. DOUBLE PRECISION BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
  257. $ TMP1, TNRM, VLL, VUU
  258. * ..
  259. * .. External Functions ..
  260. LOGICAL LSAME
  261. DOUBLE PRECISION DLAMCH, DLANST
  262. EXTERNAL LSAME, DLAMCH, DLANST
  263. * ..
  264. * .. External Subroutines ..
  265. EXTERNAL DCOPY, DSCAL, DSTEBZ, DSTEIN, DSTEQR, DSTERF,
  266. $ DSWAP, XERBLA
  267. * ..
  268. * .. Intrinsic Functions ..
  269. INTRINSIC MAX, MIN, SQRT
  270. * ..
  271. * .. Executable Statements ..
  272. *
  273. * Test the input parameters.
  274. *
  275. WANTZ = LSAME( JOBZ, 'V' )
  276. ALLEIG = LSAME( RANGE, 'A' )
  277. VALEIG = LSAME( RANGE, 'V' )
  278. INDEIG = LSAME( RANGE, 'I' )
  279. *
  280. INFO = 0
  281. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  282. INFO = -1
  283. ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  284. INFO = -2
  285. ELSE IF( N.LT.0 ) THEN
  286. INFO = -3
  287. ELSE
  288. IF( VALEIG ) THEN
  289. IF( N.GT.0 .AND. VU.LE.VL )
  290. $ INFO = -7
  291. ELSE IF( INDEIG ) THEN
  292. IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  293. INFO = -8
  294. ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  295. INFO = -9
  296. END IF
  297. END IF
  298. END IF
  299. IF( INFO.EQ.0 ) THEN
  300. IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
  301. $ INFO = -14
  302. END IF
  303. *
  304. IF( INFO.NE.0 ) THEN
  305. CALL XERBLA( 'DSTEVX', -INFO )
  306. RETURN
  307. END IF
  308. *
  309. * Quick return if possible
  310. *
  311. M = 0
  312. IF( N.EQ.0 )
  313. $ RETURN
  314. *
  315. IF( N.EQ.1 ) THEN
  316. IF( ALLEIG .OR. INDEIG ) THEN
  317. M = 1
  318. W( 1 ) = D( 1 )
  319. ELSE
  320. IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
  321. M = 1
  322. W( 1 ) = D( 1 )
  323. END IF
  324. END IF
  325. IF( WANTZ )
  326. $ Z( 1, 1 ) = ONE
  327. RETURN
  328. END IF
  329. *
  330. * Get machine constants.
  331. *
  332. SAFMIN = DLAMCH( 'Safe minimum' )
  333. EPS = DLAMCH( 'Precision' )
  334. SMLNUM = SAFMIN / EPS
  335. BIGNUM = ONE / SMLNUM
  336. RMIN = SQRT( SMLNUM )
  337. RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  338. *
  339. * Scale matrix to allowable range, if necessary.
  340. *
  341. ISCALE = 0
  342. IF( VALEIG ) THEN
  343. VLL = VL
  344. VUU = VU
  345. ELSE
  346. VLL = ZERO
  347. VUU = ZERO
  348. END IF
  349. TNRM = DLANST( 'M', N, D, E )
  350. IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
  351. ISCALE = 1
  352. SIGMA = RMIN / TNRM
  353. ELSE IF( TNRM.GT.RMAX ) THEN
  354. ISCALE = 1
  355. SIGMA = RMAX / TNRM
  356. END IF
  357. IF( ISCALE.EQ.1 ) THEN
  358. CALL DSCAL( N, SIGMA, D, 1 )
  359. CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
  360. IF( VALEIG ) THEN
  361. VLL = VL*SIGMA
  362. VUU = VU*SIGMA
  363. END IF
  364. END IF
  365. *
  366. * If all eigenvalues are desired and ABSTOL is less than zero, then
  367. * call DSTERF or SSTEQR. If this fails for some eigenvalue, then
  368. * try DSTEBZ.
  369. *
  370. TEST = .FALSE.
  371. IF( INDEIG ) THEN
  372. IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  373. TEST = .TRUE.
  374. END IF
  375. END IF
  376. IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
  377. CALL DCOPY( N, D, 1, W, 1 )
  378. CALL DCOPY( N-1, E( 1 ), 1, WORK( 1 ), 1 )
  379. INDWRK = N + 1
  380. IF( .NOT.WANTZ ) THEN
  381. CALL DSTERF( N, W, WORK, INFO )
  382. ELSE
  383. CALL DSTEQR( 'I', N, W, WORK, Z, LDZ, WORK( INDWRK ), INFO )
  384. IF( INFO.EQ.0 ) THEN
  385. DO 10 I = 1, N
  386. IFAIL( I ) = 0
  387. 10 CONTINUE
  388. END IF
  389. END IF
  390. IF( INFO.EQ.0 ) THEN
  391. M = N
  392. GO TO 20
  393. END IF
  394. INFO = 0
  395. END IF
  396. *
  397. * Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
  398. *
  399. IF( WANTZ ) THEN
  400. ORDER = 'B'
  401. ELSE
  402. ORDER = 'E'
  403. END IF
  404. INDWRK = 1
  405. INDIBL = 1
  406. INDISP = INDIBL + N
  407. INDIWO = INDISP + N
  408. CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTOL, D, E, M,
  409. $ NSPLIT, W, IWORK( INDIBL ), IWORK( INDISP ),
  410. $ WORK( INDWRK ), IWORK( INDIWO ), INFO )
  411. *
  412. IF( WANTZ ) THEN
  413. CALL DSTEIN( N, D, E, M, W, IWORK( INDIBL ), IWORK( INDISP ),
  414. $ Z, LDZ, WORK( INDWRK ), IWORK( INDIWO ), IFAIL,
  415. $ INFO )
  416. END IF
  417. *
  418. * If matrix was scaled, then rescale eigenvalues appropriately.
  419. *
  420. 20 CONTINUE
  421. IF( ISCALE.EQ.1 ) THEN
  422. IF( INFO.EQ.0 ) THEN
  423. IMAX = M
  424. ELSE
  425. IMAX = INFO - 1
  426. END IF
  427. CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  428. END IF
  429. *
  430. * If eigenvalues are not in order, then sort them, along with
  431. * eigenvectors.
  432. *
  433. IF( WANTZ ) THEN
  434. DO 40 J = 1, M - 1
  435. I = 0
  436. TMP1 = W( J )
  437. DO 30 JJ = J + 1, M
  438. IF( W( JJ ).LT.TMP1 ) THEN
  439. I = JJ
  440. TMP1 = W( JJ )
  441. END IF
  442. 30 CONTINUE
  443. *
  444. IF( I.NE.0 ) THEN
  445. ITMP1 = IWORK( INDIBL+I-1 )
  446. W( I ) = W( J )
  447. IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  448. W( J ) = TMP1
  449. IWORK( INDIBL+J-1 ) = ITMP1
  450. CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  451. IF( INFO.NE.0 ) THEN
  452. ITMP1 = IFAIL( I )
  453. IFAIL( I ) = IFAIL( J )
  454. IFAIL( J ) = ITMP1
  455. END IF
  456. END IF
  457. 40 CONTINUE
  458. END IF
  459. *
  460. RETURN
  461. *
  462. * End of DSTEVX
  463. *
  464. END