You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlauu2.f 5.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198
  1. *> \brief \b DLAUU2 computes the product UUH or LHL, where U and L are upper or lower triangular matrices (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLAUU2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlauu2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlauu2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlauu2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLAUU2( UPLO, N, A, LDA, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION A( LDA, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DLAUU2 computes the product U * U**T or L**T * L, where the triangular
  38. *> factor U or L is stored in the upper or lower triangular part of
  39. *> the array A.
  40. *>
  41. *> If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
  42. *> overwriting the factor U in A.
  43. *> If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
  44. *> overwriting the factor L in A.
  45. *>
  46. *> This is the unblocked form of the algorithm, calling Level 2 BLAS.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] UPLO
  53. *> \verbatim
  54. *> UPLO is CHARACTER*1
  55. *> Specifies whether the triangular factor stored in the array A
  56. *> is upper or lower triangular:
  57. *> = 'U': Upper triangular
  58. *> = 'L': Lower triangular
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The order of the triangular factor U or L. N >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in,out] A
  68. *> \verbatim
  69. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  70. *> On entry, the triangular factor U or L.
  71. *> On exit, if UPLO = 'U', the upper triangle of A is
  72. *> overwritten with the upper triangle of the product U * U**T;
  73. *> if UPLO = 'L', the lower triangle of A is overwritten with
  74. *> the lower triangle of the product L**T * L.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] LDA
  78. *> \verbatim
  79. *> LDA is INTEGER
  80. *> The leading dimension of the array A. LDA >= max(1,N).
  81. *> \endverbatim
  82. *>
  83. *> \param[out] INFO
  84. *> \verbatim
  85. *> INFO is INTEGER
  86. *> = 0: successful exit
  87. *> < 0: if INFO = -k, the k-th argument had an illegal value
  88. *> \endverbatim
  89. *
  90. * Authors:
  91. * ========
  92. *
  93. *> \author Univ. of Tennessee
  94. *> \author Univ. of California Berkeley
  95. *> \author Univ. of Colorado Denver
  96. *> \author NAG Ltd.
  97. *
  98. *> \date December 2016
  99. *
  100. *> \ingroup doubleOTHERauxiliary
  101. *
  102. * =====================================================================
  103. SUBROUTINE DLAUU2( UPLO, N, A, LDA, INFO )
  104. *
  105. * -- LAPACK auxiliary routine (version 3.7.0) --
  106. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  107. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  108. * December 2016
  109. *
  110. * .. Scalar Arguments ..
  111. CHARACTER UPLO
  112. INTEGER INFO, LDA, N
  113. * ..
  114. * .. Array Arguments ..
  115. DOUBLE PRECISION A( LDA, * )
  116. * ..
  117. *
  118. * =====================================================================
  119. *
  120. * .. Parameters ..
  121. DOUBLE PRECISION ONE
  122. PARAMETER ( ONE = 1.0D+0 )
  123. * ..
  124. * .. Local Scalars ..
  125. LOGICAL UPPER
  126. INTEGER I
  127. DOUBLE PRECISION AII
  128. * ..
  129. * .. External Functions ..
  130. LOGICAL LSAME
  131. DOUBLE PRECISION DDOT
  132. EXTERNAL LSAME, DDOT
  133. * ..
  134. * .. External Subroutines ..
  135. EXTERNAL DGEMV, DSCAL, XERBLA
  136. * ..
  137. * .. Intrinsic Functions ..
  138. INTRINSIC MAX
  139. * ..
  140. * .. Executable Statements ..
  141. *
  142. * Test the input parameters.
  143. *
  144. INFO = 0
  145. UPPER = LSAME( UPLO, 'U' )
  146. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  147. INFO = -1
  148. ELSE IF( N.LT.0 ) THEN
  149. INFO = -2
  150. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  151. INFO = -4
  152. END IF
  153. IF( INFO.NE.0 ) THEN
  154. CALL XERBLA( 'DLAUU2', -INFO )
  155. RETURN
  156. END IF
  157. *
  158. * Quick return if possible
  159. *
  160. IF( N.EQ.0 )
  161. $ RETURN
  162. *
  163. IF( UPPER ) THEN
  164. *
  165. * Compute the product U * U**T.
  166. *
  167. DO 10 I = 1, N
  168. AII = A( I, I )
  169. IF( I.LT.N ) THEN
  170. A( I, I ) = DDOT( N-I+1, A( I, I ), LDA, A( I, I ), LDA )
  171. CALL DGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
  172. $ LDA, A( I, I+1 ), LDA, AII, A( 1, I ), 1 )
  173. ELSE
  174. CALL DSCAL( I, AII, A( 1, I ), 1 )
  175. END IF
  176. 10 CONTINUE
  177. *
  178. ELSE
  179. *
  180. * Compute the product L**T * L.
  181. *
  182. DO 20 I = 1, N
  183. AII = A( I, I )
  184. IF( I.LT.N ) THEN
  185. A( I, I ) = DDOT( N-I+1, A( I, I ), 1, A( I, I ), 1 )
  186. CALL DGEMV( 'Transpose', N-I, I-1, ONE, A( I+1, 1 ), LDA,
  187. $ A( I+1, I ), 1, AII, A( I, 1 ), LDA )
  188. ELSE
  189. CALL DSCAL( I, AII, A( I, 1 ), LDA )
  190. END IF
  191. 20 CONTINUE
  192. END IF
  193. *
  194. RETURN
  195. *
  196. * End of DLAUU2
  197. *
  198. END