|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706 |
- *> \brief <b> CGESVD computes the singular value decomposition (SVD) for GE matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGESVD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesvd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesvd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesvd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT,
- * WORK, LWORK, RWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBU, JOBVT
- * INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * REAL RWORK( * ), S( * )
- * COMPLEX A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
- * $ WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGESVD computes the singular value decomposition (SVD) of a complex
- *> M-by-N matrix A, optionally computing the left and/or right singular
- *> vectors. The SVD is written
- *>
- *> A = U * SIGMA * conjugate-transpose(V)
- *>
- *> where SIGMA is an M-by-N matrix which is zero except for its
- *> min(m,n) diagonal elements, U is an M-by-M unitary matrix, and
- *> V is an N-by-N unitary matrix. The diagonal elements of SIGMA
- *> are the singular values of A; they are real and non-negative, and
- *> are returned in descending order. The first min(m,n) columns of
- *> U and V are the left and right singular vectors of A.
- *>
- *> Note that the routine returns V**H, not V.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBU
- *> \verbatim
- *> JOBU is CHARACTER*1
- *> Specifies options for computing all or part of the matrix U:
- *> = 'A': all M columns of U are returned in array U:
- *> = 'S': the first min(m,n) columns of U (the left singular
- *> vectors) are returned in the array U;
- *> = 'O': the first min(m,n) columns of U (the left singular
- *> vectors) are overwritten on the array A;
- *> = 'N': no columns of U (no left singular vectors) are
- *> computed.
- *> \endverbatim
- *>
- *> \param[in] JOBVT
- *> \verbatim
- *> JOBVT is CHARACTER*1
- *> Specifies options for computing all or part of the matrix
- *> V**H:
- *> = 'A': all N rows of V**H are returned in the array VT;
- *> = 'S': the first min(m,n) rows of V**H (the right singular
- *> vectors) are returned in the array VT;
- *> = 'O': the first min(m,n) rows of V**H (the right singular
- *> vectors) are overwritten on the array A;
- *> = 'N': no rows of V**H (no right singular vectors) are
- *> computed.
- *>
- *> JOBVT and JOBU cannot both be 'O'.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the input matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the input matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> On entry, the M-by-N matrix A.
- *> On exit,
- *> if JOBU = 'O', A is overwritten with the first min(m,n)
- *> columns of U (the left singular vectors,
- *> stored columnwise);
- *> if JOBVT = 'O', A is overwritten with the first min(m,n)
- *> rows of V**H (the right singular vectors,
- *> stored rowwise);
- *> if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A
- *> are destroyed.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is REAL array, dimension (min(M,N))
- *> The singular values of A, sorted so that S(i) >= S(i+1).
- *> \endverbatim
- *>
- *> \param[out] U
- *> \verbatim
- *> U is COMPLEX array, dimension (LDU,UCOL)
- *> (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'.
- *> If JOBU = 'A', U contains the M-by-M unitary matrix U;
- *> if JOBU = 'S', U contains the first min(m,n) columns of U
- *> (the left singular vectors, stored columnwise);
- *> if JOBU = 'N' or 'O', U is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of the array U. LDU >= 1; if
- *> JOBU = 'S' or 'A', LDU >= M.
- *> \endverbatim
- *>
- *> \param[out] VT
- *> \verbatim
- *> VT is COMPLEX array, dimension (LDVT,N)
- *> If JOBVT = 'A', VT contains the N-by-N unitary matrix
- *> V**H;
- *> if JOBVT = 'S', VT contains the first min(m,n) rows of
- *> V**H (the right singular vectors, stored rowwise);
- *> if JOBVT = 'N' or 'O', VT is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDVT
- *> \verbatim
- *> LDVT is INTEGER
- *> The leading dimension of the array VT. LDVT >= 1; if
- *> JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> LWORK >= MAX(1,2*MIN(M,N)+MAX(M,N)).
- *> For good performance, LWORK should generally be larger.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (5*min(M,N))
- *> On exit, if INFO > 0, RWORK(1:MIN(M,N)-1) contains the
- *> unconverged superdiagonal elements of an upper bidiagonal
- *> matrix B whose diagonal is in S (not necessarily sorted).
- *> B satisfies A = U * B * VT, so it has the same singular
- *> values as A, and singular vectors related by U and VT.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: if CBDSQR did not converge, INFO specifies how many
- *> superdiagonals of an intermediate bidiagonal form B
- *> did not converge to zero. See the description of RWORK
- *> above for details.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date April 2012
- *
- *> \ingroup complexGEsing
- *
- * =====================================================================
- SUBROUTINE CGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT,
- $ WORK, LWORK, RWORK, INFO )
- *
- * -- LAPACK driver routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * April 2012
- *
- * .. Scalar Arguments ..
- CHARACTER JOBU, JOBVT
- INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
- * ..
- * .. Array Arguments ..
- REAL RWORK( * ), S( * )
- COMPLEX A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
- $ WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX CZERO, CONE
- PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ),
- $ CONE = ( 1.0E0, 0.0E0 ) )
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, WNTUA, WNTUAS, WNTUN, WNTUO, WNTUS,
- $ WNTVA, WNTVAS, WNTVN, WNTVO, WNTVS
- INTEGER BLK, CHUNK, I, IE, IERR, IR, IRWORK, ISCL,
- $ ITAU, ITAUP, ITAUQ, IU, IWORK, LDWRKR, LDWRKU,
- $ MAXWRK, MINMN, MINWRK, MNTHR, NCU, NCVT, NRU,
- $ NRVT, WRKBL
- INTEGER LWORK_CGEQRF, LWORK_CUNGQR_N, LWORK_CUNGQR_M,
- $ LWORK_CGEBRD, LWORK_CUNGBR_P, LWORK_CUNGBR_Q,
- $ LWORK_CGELQF, LWORK_CUNGLQ_N, LWORK_CUNGLQ_M
- REAL ANRM, BIGNUM, EPS, SMLNUM
- * ..
- * .. Local Arrays ..
- REAL DUM( 1 )
- COMPLEX CDUM( 1 )
- * ..
- * .. External Subroutines ..
- EXTERNAL CBDSQR, CGEBRD, CGELQF, CGEMM, CGEQRF, CLACPY,
- $ CLASCL, CLASET, CUNGBR, CUNGLQ, CUNGQR, CUNMBR,
- $ SLASCL, XERBLA
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- REAL CLANGE, SLAMCH
- EXTERNAL LSAME, ILAENV, CLANGE, SLAMCH
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- MINMN = MIN( M, N )
- WNTUA = LSAME( JOBU, 'A' )
- WNTUS = LSAME( JOBU, 'S' )
- WNTUAS = WNTUA .OR. WNTUS
- WNTUO = LSAME( JOBU, 'O' )
- WNTUN = LSAME( JOBU, 'N' )
- WNTVA = LSAME( JOBVT, 'A' )
- WNTVS = LSAME( JOBVT, 'S' )
- WNTVAS = WNTVA .OR. WNTVS
- WNTVO = LSAME( JOBVT, 'O' )
- WNTVN = LSAME( JOBVT, 'N' )
- LQUERY = ( LWORK.EQ.-1 )
- *
- IF( .NOT.( WNTUA .OR. WNTUS .OR. WNTUO .OR. WNTUN ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( WNTVA .OR. WNTVS .OR. WNTVO .OR. WNTVN ) .OR.
- $ ( WNTVO .AND. WNTUO ) ) THEN
- INFO = -2
- ELSE IF( M.LT.0 ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -6
- ELSE IF( LDU.LT.1 .OR. ( WNTUAS .AND. LDU.LT.M ) ) THEN
- INFO = -9
- ELSE IF( LDVT.LT.1 .OR. ( WNTVA .AND. LDVT.LT.N ) .OR.
- $ ( WNTVS .AND. LDVT.LT.MINMN ) ) THEN
- INFO = -11
- END IF
- *
- * Compute workspace
- * (Note: Comments in the code beginning "Workspace:" describe the
- * minimal amount of workspace needed at that point in the code,
- * as well as the preferred amount for good performance.
- * CWorkspace refers to complex workspace, and RWorkspace to
- * real workspace. NB refers to the optimal block size for the
- * immediately following subroutine, as returned by ILAENV.)
- *
- IF( INFO.EQ.0 ) THEN
- MINWRK = 1
- MAXWRK = 1
- IF( M.GE.N .AND. MINMN.GT.0 ) THEN
- *
- * Space needed for ZBDSQR is BDSPAC = 5*N
- *
- MNTHR = ILAENV( 6, 'CGESVD', JOBU // JOBVT, M, N, 0, 0 )
- * Compute space needed for CGEQRF
- CALL CGEQRF( M, N, A, LDA, CDUM(1), CDUM(1), -1, IERR )
- LWORK_CGEQRF = INT( CDUM(1) )
- * Compute space needed for CUNGQR
- CALL CUNGQR( M, N, N, A, LDA, CDUM(1), CDUM(1), -1, IERR )
- LWORK_CUNGQR_N = INT( CDUM(1) )
- CALL CUNGQR( M, M, N, A, LDA, CDUM(1), CDUM(1), -1, IERR )
- LWORK_CUNGQR_M = INT( CDUM(1) )
- * Compute space needed for CGEBRD
- CALL CGEBRD( N, N, A, LDA, S, DUM(1), CDUM(1),
- $ CDUM(1), CDUM(1), -1, IERR )
- LWORK_CGEBRD = INT( CDUM(1) )
- * Compute space needed for CUNGBR
- CALL CUNGBR( 'P', N, N, N, A, LDA, CDUM(1),
- $ CDUM(1), -1, IERR )
- LWORK_CUNGBR_P = INT( CDUM(1) )
- CALL CUNGBR( 'Q', N, N, N, A, LDA, CDUM(1),
- $ CDUM(1), -1, IERR )
- LWORK_CUNGBR_Q = INT( CDUM(1) )
- *
- MNTHR = ILAENV( 6, 'CGESVD', JOBU // JOBVT, M, N, 0, 0 )
- IF( M.GE.MNTHR ) THEN
- IF( WNTUN ) THEN
- *
- * Path 1 (M much larger than N, JOBU='N')
- *
- MAXWRK = N + LWORK_CGEQRF
- MAXWRK = MAX( MAXWRK, 2*N+LWORK_CGEBRD )
- IF( WNTVO .OR. WNTVAS )
- $ MAXWRK = MAX( MAXWRK, 2*N+LWORK_CUNGBR_P )
- MINWRK = 3*N
- ELSE IF( WNTUO .AND. WNTVN ) THEN
- *
- * Path 2 (M much larger than N, JOBU='O', JOBVT='N')
- *
- WRKBL = N + LWORK_CGEQRF
- WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_N )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q )
- MAXWRK = MAX( N*N+WRKBL, N*N+M*N )
- MINWRK = 2*N + M
- ELSE IF( WNTUO .AND. WNTVAS ) THEN
- *
- * Path 3 (M much larger than N, JOBU='O', JOBVT='S' or
- * 'A')
- *
- WRKBL = N + LWORK_CGEQRF
- WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_N )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_P )
- MAXWRK = MAX( N*N+WRKBL, N*N+M*N )
- MINWRK = 2*N + M
- ELSE IF( WNTUS .AND. WNTVN ) THEN
- *
- * Path 4 (M much larger than N, JOBU='S', JOBVT='N')
- *
- WRKBL = N + LWORK_CGEQRF
- WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_N )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q )
- MAXWRK = N*N + WRKBL
- MINWRK = 2*N + M
- ELSE IF( WNTUS .AND. WNTVO ) THEN
- *
- * Path 5 (M much larger than N, JOBU='S', JOBVT='O')
- *
- WRKBL = N + LWORK_CGEQRF
- WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_N )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_P )
- MAXWRK = 2*N*N + WRKBL
- MINWRK = 2*N + M
- ELSE IF( WNTUS .AND. WNTVAS ) THEN
- *
- * Path 6 (M much larger than N, JOBU='S', JOBVT='S' or
- * 'A')
- *
- WRKBL = N + LWORK_CGEQRF
- WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_N )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_P )
- MAXWRK = N*N + WRKBL
- MINWRK = 2*N + M
- ELSE IF( WNTUA .AND. WNTVN ) THEN
- *
- * Path 7 (M much larger than N, JOBU='A', JOBVT='N')
- *
- WRKBL = N + LWORK_CGEQRF
- WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_M )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q )
- MAXWRK = N*N + WRKBL
- MINWRK = 2*N + M
- ELSE IF( WNTUA .AND. WNTVO ) THEN
- *
- * Path 8 (M much larger than N, JOBU='A', JOBVT='O')
- *
- WRKBL = N + LWORK_CGEQRF
- WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_M )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_P )
- MAXWRK = 2*N*N + WRKBL
- MINWRK = 2*N + M
- ELSE IF( WNTUA .AND. WNTVAS ) THEN
- *
- * Path 9 (M much larger than N, JOBU='A', JOBVT='S' or
- * 'A')
- *
- WRKBL = N + LWORK_CGEQRF
- WRKBL = MAX( WRKBL, N+LWORK_CUNGQR_M )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CGEBRD )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_Q )
- WRKBL = MAX( WRKBL, 2*N+LWORK_CUNGBR_P )
- MAXWRK = N*N + WRKBL
- MINWRK = 2*N + M
- END IF
- ELSE
- *
- * Path 10 (M at least N, but not much larger)
- *
- CALL CGEBRD( M, N, A, LDA, S, DUM(1), CDUM(1),
- $ CDUM(1), CDUM(1), -1, IERR )
- LWORK_CGEBRD = INT( CDUM(1) )
- MAXWRK = 2*N + LWORK_CGEBRD
- IF( WNTUS .OR. WNTUO ) THEN
- CALL CUNGBR( 'Q', M, N, N, A, LDA, CDUM(1),
- $ CDUM(1), -1, IERR )
- LWORK_CUNGBR_Q = INT( CDUM(1) )
- MAXWRK = MAX( MAXWRK, 2*N+LWORK_CUNGBR_Q )
- END IF
- IF( WNTUA ) THEN
- CALL CUNGBR( 'Q', M, M, N, A, LDA, CDUM(1),
- $ CDUM(1), -1, IERR )
- LWORK_CUNGBR_Q = INT( CDUM(1) )
- MAXWRK = MAX( MAXWRK, 2*N+LWORK_CUNGBR_Q )
- END IF
- IF( .NOT.WNTVN ) THEN
- MAXWRK = MAX( MAXWRK, 2*N+LWORK_CUNGBR_P )
- END IF
- MINWRK = 2*N + M
- END IF
- ELSE IF( MINMN.GT.0 ) THEN
- *
- * Space needed for CBDSQR is BDSPAC = 5*M
- *
- MNTHR = ILAENV( 6, 'CGESVD', JOBU // JOBVT, M, N, 0, 0 )
- * Compute space needed for CGELQF
- CALL CGELQF( M, N, A, LDA, CDUM(1), CDUM(1), -1, IERR )
- LWORK_CGELQF = INT( CDUM(1) )
- * Compute space needed for CUNGLQ
- CALL CUNGLQ( N, N, M, CDUM(1), N, CDUM(1), CDUM(1), -1,
- $ IERR )
- LWORK_CUNGLQ_N = INT( CDUM(1) )
- CALL CUNGLQ( M, N, M, A, LDA, CDUM(1), CDUM(1), -1, IERR )
- LWORK_CUNGLQ_M = INT( CDUM(1) )
- * Compute space needed for CGEBRD
- CALL CGEBRD( M, M, A, LDA, S, DUM(1), CDUM(1),
- $ CDUM(1), CDUM(1), -1, IERR )
- LWORK_CGEBRD = INT( CDUM(1) )
- * Compute space needed for CUNGBR P
- CALL CUNGBR( 'P', M, M, M, A, N, CDUM(1),
- $ CDUM(1), -1, IERR )
- LWORK_CUNGBR_P = INT( CDUM(1) )
- * Compute space needed for CUNGBR Q
- CALL CUNGBR( 'Q', M, M, M, A, N, CDUM(1),
- $ CDUM(1), -1, IERR )
- LWORK_CUNGBR_Q = INT( CDUM(1) )
- IF( N.GE.MNTHR ) THEN
- IF( WNTVN ) THEN
- *
- * Path 1t(N much larger than M, JOBVT='N')
- *
- MAXWRK = M + LWORK_CGELQF
- MAXWRK = MAX( MAXWRK, 2*M+LWORK_CGEBRD )
- IF( WNTUO .OR. WNTUAS )
- $ MAXWRK = MAX( MAXWRK, 2*M+LWORK_CUNGBR_Q )
- MINWRK = 3*M
- ELSE IF( WNTVO .AND. WNTUN ) THEN
- *
- * Path 2t(N much larger than M, JOBU='N', JOBVT='O')
- *
- WRKBL = M + LWORK_CGELQF
- WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_M )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P )
- MAXWRK = MAX( M*M+WRKBL, M*M+M*N )
- MINWRK = 2*M + N
- ELSE IF( WNTVO .AND. WNTUAS ) THEN
- *
- * Path 3t(N much larger than M, JOBU='S' or 'A',
- * JOBVT='O')
- *
- WRKBL = M + LWORK_CGELQF
- WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_M )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_Q )
- MAXWRK = MAX( M*M+WRKBL, M*M+M*N )
- MINWRK = 2*M + N
- ELSE IF( WNTVS .AND. WNTUN ) THEN
- *
- * Path 4t(N much larger than M, JOBU='N', JOBVT='S')
- *
- WRKBL = M + LWORK_CGELQF
- WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_M )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P )
- MAXWRK = M*M + WRKBL
- MINWRK = 2*M + N
- ELSE IF( WNTVS .AND. WNTUO ) THEN
- *
- * Path 5t(N much larger than M, JOBU='O', JOBVT='S')
- *
- WRKBL = M + LWORK_CGELQF
- WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_M )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_Q )
- MAXWRK = 2*M*M + WRKBL
- MINWRK = 2*M + N
- ELSE IF( WNTVS .AND. WNTUAS ) THEN
- *
- * Path 6t(N much larger than M, JOBU='S' or 'A',
- * JOBVT='S')
- *
- WRKBL = M + LWORK_CGELQF
- WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_M )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_Q )
- MAXWRK = M*M + WRKBL
- MINWRK = 2*M + N
- ELSE IF( WNTVA .AND. WNTUN ) THEN
- *
- * Path 7t(N much larger than M, JOBU='N', JOBVT='A')
- *
- WRKBL = M + LWORK_CGELQF
- WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_N )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P )
- MAXWRK = M*M + WRKBL
- MINWRK = 2*M + N
- ELSE IF( WNTVA .AND. WNTUO ) THEN
- *
- * Path 8t(N much larger than M, JOBU='O', JOBVT='A')
- *
- WRKBL = M + LWORK_CGELQF
- WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_N )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_Q )
- MAXWRK = 2*M*M + WRKBL
- MINWRK = 2*M + N
- ELSE IF( WNTVA .AND. WNTUAS ) THEN
- *
- * Path 9t(N much larger than M, JOBU='S' or 'A',
- * JOBVT='A')
- *
- WRKBL = M + LWORK_CGELQF
- WRKBL = MAX( WRKBL, M+LWORK_CUNGLQ_N )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CGEBRD )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_P )
- WRKBL = MAX( WRKBL, 2*M+LWORK_CUNGBR_Q )
- MAXWRK = M*M + WRKBL
- MINWRK = 2*M + N
- END IF
- ELSE
- *
- * Path 10t(N greater than M, but not much larger)
- *
- CALL CGEBRD( M, N, A, LDA, S, DUM(1), CDUM(1),
- $ CDUM(1), CDUM(1), -1, IERR )
- LWORK_CGEBRD = INT( CDUM(1) )
- MAXWRK = 2*M + LWORK_CGEBRD
- IF( WNTVS .OR. WNTVO ) THEN
- * Compute space needed for CUNGBR P
- CALL CUNGBR( 'P', M, N, M, A, N, CDUM(1),
- $ CDUM(1), -1, IERR )
- LWORK_CUNGBR_P = INT( CDUM(1) )
- MAXWRK = MAX( MAXWRK, 2*M+LWORK_CUNGBR_P )
- END IF
- IF( WNTVA ) THEN
- CALL CUNGBR( 'P', N, N, M, A, N, CDUM(1),
- $ CDUM(1), -1, IERR )
- LWORK_CUNGBR_P = INT( CDUM(1) )
- MAXWRK = MAX( MAXWRK, 2*M+LWORK_CUNGBR_P )
- END IF
- IF( .NOT.WNTUN ) THEN
- MAXWRK = MAX( MAXWRK, 2*M+LWORK_CUNGBR_Q )
- END IF
- MINWRK = 2*M + N
- END IF
- END IF
- MAXWRK = MAX( MINWRK, MAXWRK )
- WORK( 1 ) = MAXWRK
- *
- IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
- INFO = -13
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGESVD', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 ) THEN
- RETURN
- END IF
- *
- * Get machine constants
- *
- EPS = SLAMCH( 'P' )
- SMLNUM = SQRT( SLAMCH( 'S' ) ) / EPS
- BIGNUM = ONE / SMLNUM
- *
- * Scale A if max element outside range [SMLNUM,BIGNUM]
- *
- ANRM = CLANGE( 'M', M, N, A, LDA, DUM )
- ISCL = 0
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- ISCL = 1
- CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, IERR )
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- ISCL = 1
- CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, IERR )
- END IF
- *
- IF( M.GE.N ) THEN
- *
- * A has at least as many rows as columns. If A has sufficiently
- * more rows than columns, first reduce using the QR
- * decomposition (if sufficient workspace available)
- *
- IF( M.GE.MNTHR ) THEN
- *
- IF( WNTUN ) THEN
- *
- * Path 1 (M much larger than N, JOBU='N')
- * No left singular vectors to be computed
- *
- ITAU = 1
- IWORK = ITAU + N
- *
- * Compute A=Q*R
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: need 0)
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Zero out below R
- *
- IF( N .GT. 1 ) THEN
- CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
- $ LDA )
- END IF
- IE = 1
- ITAUQ = 1
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in A
- * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
- $ IERR )
- NCVT = 0
- IF( WNTVO .OR. WNTVAS ) THEN
- *
- * If right singular vectors desired, generate P'.
- * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- NCVT = N
- END IF
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing right
- * singular vectors of A in A if desired
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, NCVT, 0, 0, S, RWORK( IE ), A, LDA,
- $ CDUM, 1, CDUM, 1, RWORK( IRWORK ), INFO )
- *
- * If right singular vectors desired in VT, copy them there
- *
- IF( WNTVAS )
- $ CALL CLACPY( 'F', N, N, A, LDA, VT, LDVT )
- *
- ELSE IF( WNTUO .AND. WNTVN ) THEN
- *
- * Path 2 (M much larger than N, JOBU='O', JOBVT='N')
- * N left singular vectors to be overwritten on A and
- * no right singular vectors to be computed
- *
- IF( LWORK.GE.N*N+3*N ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IR = 1
- IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*N ) THEN
- *
- * WORK(IU) is LDA by N, WORK(IR) is LDA by N
- *
- LDWRKU = LDA
- LDWRKR = LDA
- ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+N*N ) THEN
- *
- * WORK(IU) is LDA by N, WORK(IR) is N by N
- *
- LDWRKU = LDA
- LDWRKR = N
- ELSE
- *
- * WORK(IU) is LDWRKU by N, WORK(IR) is N by N
- *
- LDWRKU = ( LWORK-N*N ) / N
- LDWRKR = N
- END IF
- ITAU = IR + LDWRKR*N
- IWORK = ITAU + N
- *
- * Compute A=Q*R
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R to WORK(IR) and zero out below it
- *
- CALL CLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
- CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ WORK( IR+1 ), LDWRKR )
- *
- * Generate Q in A
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in WORK(IR)
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL CGEBRD( N, N, WORK( IR ), LDWRKR, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Generate left vectors bidiagonalizing R
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
- * (RWorkspace: need 0)
- *
- CALL CUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of R in WORK(IR)
- * (CWorkspace: need N*N)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, 0, N, 0, S, RWORK( IE ), CDUM, 1,
- $ WORK( IR ), LDWRKR, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- IU = ITAUQ
- *
- * Multiply Q in A by left singular vectors of R in
- * WORK(IR), storing result in WORK(IU) and copying to A
- * (CWorkspace: need N*N+N, prefer N*N+M*N)
- * (RWorkspace: 0)
- *
- DO 10 I = 1, M, LDWRKU
- CHUNK = MIN( M-I+1, LDWRKU )
- CALL CGEMM( 'N', 'N', CHUNK, N, N, CONE, A( I, 1 ),
- $ LDA, WORK( IR ), LDWRKR, CZERO,
- $ WORK( IU ), LDWRKU )
- CALL CLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
- $ A( I, 1 ), LDA )
- 10 CONTINUE
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- IE = 1
- ITAUQ = 1
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize A
- * (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB)
- * (RWorkspace: N)
- *
- CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Generate left vectors bidiagonalizing A
- * (CWorkspace: need 3*N, prefer 2*N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in A
- * (CWorkspace: need 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, 0, M, 0, S, RWORK( IE ), CDUM, 1,
- $ A, LDA, CDUM, 1, RWORK( IRWORK ), INFO )
- *
- END IF
- *
- ELSE IF( WNTUO .AND. WNTVAS ) THEN
- *
- * Path 3 (M much larger than N, JOBU='O', JOBVT='S' or 'A')
- * N left singular vectors to be overwritten on A and
- * N right singular vectors to be computed in VT
- *
- IF( LWORK.GE.N*N+3*N ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IR = 1
- IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*N ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is LDA by N
- *
- LDWRKU = LDA
- LDWRKR = LDA
- ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+N*N ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is N by N
- *
- LDWRKU = LDA
- LDWRKR = N
- ELSE
- *
- * WORK(IU) is LDWRKU by N and WORK(IR) is N by N
- *
- LDWRKU = ( LWORK-N*N ) / N
- LDWRKR = N
- END IF
- ITAU = IR + LDWRKR*N
- IWORK = ITAU + N
- *
- * Compute A=Q*R
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R to VT, zeroing out below it
- *
- CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
- IF( N.GT.1 )
- $ CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ VT( 2, 1 ), LDVT )
- *
- * Generate Q in A
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in VT, copying result to WORK(IR)
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL CGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'L', N, N, VT, LDVT, WORK( IR ), LDWRKR )
- *
- * Generate left vectors bidiagonalizing R in WORK(IR)
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right vectors bidiagonalizing R in VT
- * (CWorkspace: need N*N+3*N-1, prefer N*N+2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of R in WORK(IR) and computing right
- * singular vectors of R in VT
- * (CWorkspace: need N*N)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), VT,
- $ LDVT, WORK( IR ), LDWRKR, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- IU = ITAUQ
- *
- * Multiply Q in A by left singular vectors of R in
- * WORK(IR), storing result in WORK(IU) and copying to A
- * (CWorkspace: need N*N+N, prefer N*N+M*N)
- * (RWorkspace: 0)
- *
- DO 20 I = 1, M, LDWRKU
- CHUNK = MIN( M-I+1, LDWRKU )
- CALL CGEMM( 'N', 'N', CHUNK, N, N, CONE, A( I, 1 ),
- $ LDA, WORK( IR ), LDWRKR, CZERO,
- $ WORK( IU ), LDWRKU )
- CALL CLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
- $ A( I, 1 ), LDA )
- 20 CONTINUE
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + N
- *
- * Compute A=Q*R
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R to VT, zeroing out below it
- *
- CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
- IF( N.GT.1 )
- $ CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ VT( 2, 1 ), LDVT )
- *
- * Generate Q in A
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in VT
- * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
- * (RWorkspace: N)
- *
- CALL CGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply Q in A by left vectors bidiagonalizing R
- * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
- $ WORK( ITAUQ ), A, LDA, WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right vectors bidiagonalizing R in VT
- * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in A and computing right
- * singular vectors of A in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), VT,
- $ LDVT, A, LDA, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- *
- END IF
- *
- ELSE IF( WNTUS ) THEN
- *
- IF( WNTVN ) THEN
- *
- * Path 4 (M much larger than N, JOBU='S', JOBVT='N')
- * N left singular vectors to be computed in U and
- * no right singular vectors to be computed
- *
- IF( LWORK.GE.N*N+3*N ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IR = 1
- IF( LWORK.GE.WRKBL+LDA*N ) THEN
- *
- * WORK(IR) is LDA by N
- *
- LDWRKR = LDA
- ELSE
- *
- * WORK(IR) is N by N
- *
- LDWRKR = N
- END IF
- ITAU = IR + LDWRKR*N
- IWORK = ITAU + N
- *
- * Compute A=Q*R
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R to WORK(IR), zeroing out below it
- *
- CALL CLACPY( 'U', N, N, A, LDA, WORK( IR ),
- $ LDWRKR )
- CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ WORK( IR+1 ), LDWRKR )
- *
- * Generate Q in A
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in WORK(IR)
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL CGEBRD( N, N, WORK( IR ), LDWRKR, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate left vectors bidiagonalizing R in WORK(IR)
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of R in WORK(IR)
- * (CWorkspace: need N*N)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, 0, N, 0, S, RWORK( IE ), CDUM,
- $ 1, WORK( IR ), LDWRKR, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- * Multiply Q in A by left singular vectors of R in
- * WORK(IR), storing result in U
- * (CWorkspace: need N*N)
- * (RWorkspace: 0)
- *
- CALL CGEMM( 'N', 'N', M, N, N, CONE, A, LDA,
- $ WORK( IR ), LDWRKR, CZERO, U, LDU )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Generate Q in U
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGQR( M, N, N, U, LDU, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Zero out below R in A
- *
- IF( N .GT. 1 ) THEN
- CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ A( 2, 1 ), LDA )
- END IF
- *
- * Bidiagonalize R in A
- * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply Q in U by left vectors bidiagonalizing R
- * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in U
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, 0, M, 0, S, RWORK( IE ), CDUM,
- $ 1, U, LDU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- *
- END IF
- *
- ELSE IF( WNTVO ) THEN
- *
- * Path 5 (M much larger than N, JOBU='S', JOBVT='O')
- * N left singular vectors to be computed in U and
- * N right singular vectors to be overwritten on A
- *
- IF( LWORK.GE.2*N*N+3*N ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IU = 1
- IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is LDA by N
- *
- LDWRKU = LDA
- IR = IU + LDWRKU*N
- LDWRKR = LDA
- ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is N by N
- *
- LDWRKU = LDA
- IR = IU + LDWRKU*N
- LDWRKR = N
- ELSE
- *
- * WORK(IU) is N by N and WORK(IR) is N by N
- *
- LDWRKU = N
- IR = IU + LDWRKU*N
- LDWRKR = N
- END IF
- ITAU = IR + LDWRKR*N
- IWORK = ITAU + N
- *
- * Compute A=Q*R
- * (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R to WORK(IU), zeroing out below it
- *
- CALL CLACPY( 'U', N, N, A, LDA, WORK( IU ),
- $ LDWRKU )
- CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ WORK( IU+1 ), LDWRKU )
- *
- * Generate Q in A
- * (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in WORK(IU), copying result to
- * WORK(IR)
- * (CWorkspace: need 2*N*N+3*N,
- * prefer 2*N*N+2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL CGEBRD( N, N, WORK( IU ), LDWRKU, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- CALL CLACPY( 'U', N, N, WORK( IU ), LDWRKU,
- $ WORK( IR ), LDWRKR )
- *
- * Generate left bidiagonalizing vectors in WORK(IU)
- * (CWorkspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right bidiagonalizing vectors in WORK(IR)
- * (CWorkspace: need 2*N*N+3*N-1,
- * prefer 2*N*N+2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of R in WORK(IU) and computing
- * right singular vectors of R in WORK(IR)
- * (CWorkspace: need 2*N*N)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, N, N, 0, S, RWORK( IE ),
- $ WORK( IR ), LDWRKR, WORK( IU ),
- $ LDWRKU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- *
- * Multiply Q in A by left singular vectors of R in
- * WORK(IU), storing result in U
- * (CWorkspace: need N*N)
- * (RWorkspace: 0)
- *
- CALL CGEMM( 'N', 'N', M, N, N, CONE, A, LDA,
- $ WORK( IU ), LDWRKU, CZERO, U, LDU )
- *
- * Copy right singular vectors of R to A
- * (CWorkspace: need N*N)
- * (RWorkspace: 0)
- *
- CALL CLACPY( 'F', N, N, WORK( IR ), LDWRKR, A,
- $ LDA )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Generate Q in U
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGQR( M, N, N, U, LDU, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Zero out below R in A
- *
- IF( N .GT. 1 ) THEN
- CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ A( 2, 1 ), LDA )
- END IF
- *
- * Bidiagonalize R in A
- * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply Q in U by left vectors bidiagonalizing R
- * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right vectors bidiagonalizing R in A
- * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in U and computing right
- * singular vectors of A in A
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), A,
- $ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- *
- END IF
- *
- ELSE IF( WNTVAS ) THEN
- *
- * Path 6 (M much larger than N, JOBU='S', JOBVT='S'
- * or 'A')
- * N left singular vectors to be computed in U and
- * N right singular vectors to be computed in VT
- *
- IF( LWORK.GE.N*N+3*N ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IU = 1
- IF( LWORK.GE.WRKBL+LDA*N ) THEN
- *
- * WORK(IU) is LDA by N
- *
- LDWRKU = LDA
- ELSE
- *
- * WORK(IU) is N by N
- *
- LDWRKU = N
- END IF
- ITAU = IU + LDWRKU*N
- IWORK = ITAU + N
- *
- * Compute A=Q*R
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R to WORK(IU), zeroing out below it
- *
- CALL CLACPY( 'U', N, N, A, LDA, WORK( IU ),
- $ LDWRKU )
- CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ WORK( IU+1 ), LDWRKU )
- *
- * Generate Q in A
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in WORK(IU), copying result to VT
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL CGEBRD( N, N, WORK( IU ), LDWRKU, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- CALL CLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
- $ LDVT )
- *
- * Generate left bidiagonalizing vectors in WORK(IU)
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right bidiagonalizing vectors in VT
- * (CWorkspace: need N*N+3*N-1,
- * prefer N*N+2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of R in WORK(IU) and computing
- * right singular vectors of R in VT
- * (CWorkspace: need N*N)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), VT,
- $ LDVT, WORK( IU ), LDWRKU, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- * Multiply Q in A by left singular vectors of R in
- * WORK(IU), storing result in U
- * (CWorkspace: need N*N)
- * (RWorkspace: 0)
- *
- CALL CGEMM( 'N', 'N', M, N, N, CONE, A, LDA,
- $ WORK( IU ), LDWRKU, CZERO, U, LDU )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Generate Q in U
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGQR( M, N, N, U, LDU, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R to VT, zeroing out below it
- *
- CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
- IF( N.GT.1 )
- $ CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ VT( 2, 1 ), LDVT )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in VT
- * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL CGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply Q in U by left bidiagonalizing vectors
- * in VT
- * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
- $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right bidiagonalizing vectors in VT
- * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in U and computing right
- * singular vectors of A in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), VT,
- $ LDVT, U, LDU, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- END IF
- *
- END IF
- *
- ELSE IF( WNTUA ) THEN
- *
- IF( WNTVN ) THEN
- *
- * Path 7 (M much larger than N, JOBU='A', JOBVT='N')
- * M left singular vectors to be computed in U and
- * no right singular vectors to be computed
- *
- IF( LWORK.GE.N*N+MAX( N+M, 3*N ) ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IR = 1
- IF( LWORK.GE.WRKBL+LDA*N ) THEN
- *
- * WORK(IR) is LDA by N
- *
- LDWRKR = LDA
- ELSE
- *
- * WORK(IR) is N by N
- *
- LDWRKR = N
- END IF
- ITAU = IR + LDWRKR*N
- IWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Copy R to WORK(IR), zeroing out below it
- *
- CALL CLACPY( 'U', N, N, A, LDA, WORK( IR ),
- $ LDWRKR )
- CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ WORK( IR+1 ), LDWRKR )
- *
- * Generate Q in U
- * (CWorkspace: need N*N+N+M, prefer N*N+N+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in WORK(IR)
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL CGEBRD( N, N, WORK( IR ), LDWRKR, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate left bidiagonalizing vectors in WORK(IR)
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of R in WORK(IR)
- * (CWorkspace: need N*N)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, 0, N, 0, S, RWORK( IE ), CDUM,
- $ 1, WORK( IR ), LDWRKR, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- * Multiply Q in U by left singular vectors of R in
- * WORK(IR), storing result in A
- * (CWorkspace: need N*N)
- * (RWorkspace: 0)
- *
- CALL CGEMM( 'N', 'N', M, N, N, CONE, U, LDU,
- $ WORK( IR ), LDWRKR, CZERO, A, LDA )
- *
- * Copy left singular vectors of A from A to U
- *
- CALL CLACPY( 'F', M, N, A, LDA, U, LDU )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Generate Q in U
- * (CWorkspace: need N+M, prefer N+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Zero out below R in A
- *
- IF( N .GT. 1 ) THEN
- CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ A( 2, 1 ), LDA )
- END IF
- *
- * Bidiagonalize R in A
- * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply Q in U by left bidiagonalizing vectors
- * in A
- * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in U
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, 0, M, 0, S, RWORK( IE ), CDUM,
- $ 1, U, LDU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- *
- END IF
- *
- ELSE IF( WNTVO ) THEN
- *
- * Path 8 (M much larger than N, JOBU='A', JOBVT='O')
- * M left singular vectors to be computed in U and
- * N right singular vectors to be overwritten on A
- *
- IF( LWORK.GE.2*N*N+MAX( N+M, 3*N ) ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IU = 1
- IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is LDA by N
- *
- LDWRKU = LDA
- IR = IU + LDWRKU*N
- LDWRKR = LDA
- ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is N by N
- *
- LDWRKU = LDA
- IR = IU + LDWRKU*N
- LDWRKR = N
- ELSE
- *
- * WORK(IU) is N by N and WORK(IR) is N by N
- *
- LDWRKU = N
- IR = IU + LDWRKU*N
- LDWRKR = N
- END IF
- ITAU = IR + LDWRKR*N
- IWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * (CWorkspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Generate Q in U
- * (CWorkspace: need 2*N*N+N+M, prefer 2*N*N+N+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R to WORK(IU), zeroing out below it
- *
- CALL CLACPY( 'U', N, N, A, LDA, WORK( IU ),
- $ LDWRKU )
- CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ WORK( IU+1 ), LDWRKU )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in WORK(IU), copying result to
- * WORK(IR)
- * (CWorkspace: need 2*N*N+3*N,
- * prefer 2*N*N+2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL CGEBRD( N, N, WORK( IU ), LDWRKU, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- CALL CLACPY( 'U', N, N, WORK( IU ), LDWRKU,
- $ WORK( IR ), LDWRKR )
- *
- * Generate left bidiagonalizing vectors in WORK(IU)
- * (CWorkspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right bidiagonalizing vectors in WORK(IR)
- * (CWorkspace: need 2*N*N+3*N-1,
- * prefer 2*N*N+2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of R in WORK(IU) and computing
- * right singular vectors of R in WORK(IR)
- * (CWorkspace: need 2*N*N)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, N, N, 0, S, RWORK( IE ),
- $ WORK( IR ), LDWRKR, WORK( IU ),
- $ LDWRKU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- *
- * Multiply Q in U by left singular vectors of R in
- * WORK(IU), storing result in A
- * (CWorkspace: need N*N)
- * (RWorkspace: 0)
- *
- CALL CGEMM( 'N', 'N', M, N, N, CONE, U, LDU,
- $ WORK( IU ), LDWRKU, CZERO, A, LDA )
- *
- * Copy left singular vectors of A from A to U
- *
- CALL CLACPY( 'F', M, N, A, LDA, U, LDU )
- *
- * Copy right singular vectors of R from WORK(IR) to A
- *
- CALL CLACPY( 'F', N, N, WORK( IR ), LDWRKR, A,
- $ LDA )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Generate Q in U
- * (CWorkspace: need N+M, prefer N+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Zero out below R in A
- *
- IF( N .GT. 1 ) THEN
- CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ A( 2, 1 ), LDA )
- END IF
- *
- * Bidiagonalize R in A
- * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply Q in U by left bidiagonalizing vectors
- * in A
- * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right bidiagonalizing vectors in A
- * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in U and computing right
- * singular vectors of A in A
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), A,
- $ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- *
- END IF
- *
- ELSE IF( WNTVAS ) THEN
- *
- * Path 9 (M much larger than N, JOBU='A', JOBVT='S'
- * or 'A')
- * M left singular vectors to be computed in U and
- * N right singular vectors to be computed in VT
- *
- IF( LWORK.GE.N*N+MAX( N+M, 3*N ) ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IU = 1
- IF( LWORK.GE.WRKBL+LDA*N ) THEN
- *
- * WORK(IU) is LDA by N
- *
- LDWRKU = LDA
- ELSE
- *
- * WORK(IU) is N by N
- *
- LDWRKU = N
- END IF
- ITAU = IU + LDWRKU*N
- IWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * (CWorkspace: need N*N+2*N, prefer N*N+N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Generate Q in U
- * (CWorkspace: need N*N+N+M, prefer N*N+N+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R to WORK(IU), zeroing out below it
- *
- CALL CLACPY( 'U', N, N, A, LDA, WORK( IU ),
- $ LDWRKU )
- CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ WORK( IU+1 ), LDWRKU )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in WORK(IU), copying result to VT
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL CGEBRD( N, N, WORK( IU ), LDWRKU, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- CALL CLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
- $ LDVT )
- *
- * Generate left bidiagonalizing vectors in WORK(IU)
- * (CWorkspace: need N*N+3*N, prefer N*N+2*N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right bidiagonalizing vectors in VT
- * (CWorkspace: need N*N+3*N-1,
- * prefer N*N+2*N+(N-1)*NB)
- * (RWorkspace: need 0)
- *
- CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of R in WORK(IU) and computing
- * right singular vectors of R in VT
- * (CWorkspace: need N*N)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, N, N, 0, S, RWORK( IE ), VT,
- $ LDVT, WORK( IU ), LDWRKU, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- * Multiply Q in U by left singular vectors of R in
- * WORK(IU), storing result in A
- * (CWorkspace: need N*N)
- * (RWorkspace: 0)
- *
- CALL CGEMM( 'N', 'N', M, N, N, CONE, U, LDU,
- $ WORK( IU ), LDWRKU, CZERO, A, LDA )
- *
- * Copy left singular vectors of A from A to U
- *
- CALL CLACPY( 'F', M, N, A, LDA, U, LDU )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * (CWorkspace: need 2*N, prefer N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Generate Q in U
- * (CWorkspace: need N+M, prefer N+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy R from A to VT, zeroing out below it
- *
- CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
- IF( N.GT.1 )
- $ CALL CLASET( 'L', N-1, N-1, CZERO, CZERO,
- $ VT( 2, 1 ), LDVT )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize R in VT
- * (CWorkspace: need 3*N, prefer 2*N+2*N*NB)
- * (RWorkspace: need N)
- *
- CALL CGEBRD( N, N, VT, LDVT, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply Q in U by left bidiagonalizing vectors
- * in VT
- * (CWorkspace: need 2*N+M, prefer 2*N+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
- $ WORK( ITAUQ ), U, LDU, WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right bidiagonalizing vectors in VT
- * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + N
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in U and computing right
- * singular vectors of A in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, N, M, 0, S, RWORK( IE ), VT,
- $ LDVT, U, LDU, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- END IF
- *
- END IF
- *
- END IF
- *
- ELSE
- *
- * M .LT. MNTHR
- *
- * Path 10 (M at least N, but not much larger)
- * Reduce to bidiagonal form without QR decomposition
- *
- IE = 1
- ITAUQ = 1
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
- *
- * Bidiagonalize A
- * (CWorkspace: need 2*N+M, prefer 2*N+(M+N)*NB)
- * (RWorkspace: need N)
- *
- CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
- $ IERR )
- IF( WNTUAS ) THEN
- *
- * If left singular vectors desired in U, copy result to U
- * and generate left bidiagonalizing vectors in U
- * (CWorkspace: need 2*N+NCU, prefer 2*N+NCU*NB)
- * (RWorkspace: 0)
- *
- CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
- IF( WNTUS )
- $ NCU = N
- IF( WNTUA )
- $ NCU = M
- CALL CUNGBR( 'Q', M, NCU, N, U, LDU, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- END IF
- IF( WNTVAS ) THEN
- *
- * If right singular vectors desired in VT, copy result to
- * VT and generate right bidiagonalizing vectors in VT
- * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
- CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- END IF
- IF( WNTUO ) THEN
- *
- * If left singular vectors desired in A, generate left
- * bidiagonalizing vectors in A
- * (CWorkspace: need 3*N, prefer 2*N+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- END IF
- IF( WNTVO ) THEN
- *
- * If right singular vectors desired in A, generate right
- * bidiagonalizing vectors in A
- * (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- END IF
- IRWORK = IE + N
- IF( WNTUAS .OR. WNTUO )
- $ NRU = M
- IF( WNTUN )
- $ NRU = 0
- IF( WNTVAS .OR. WNTVO )
- $ NCVT = N
- IF( WNTVN )
- $ NCVT = 0
- IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN
- *
- * Perform bidiagonal QR iteration, if desired, computing
- * left singular vectors in U and computing right singular
- * vectors in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, NCVT, NRU, 0, S, RWORK( IE ), VT,
- $ LDVT, U, LDU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN
- *
- * Perform bidiagonal QR iteration, if desired, computing
- * left singular vectors in U and computing right singular
- * vectors in A
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, NCVT, NRU, 0, S, RWORK( IE ), A,
- $ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- ELSE
- *
- * Perform bidiagonal QR iteration, if desired, computing
- * left singular vectors in A and computing right singular
- * vectors in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', N, NCVT, NRU, 0, S, RWORK( IE ), VT,
- $ LDVT, A, LDA, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- END IF
- *
- END IF
- *
- ELSE
- *
- * A has more columns than rows. If A has sufficiently more
- * columns than rows, first reduce using the LQ decomposition (if
- * sufficient workspace available)
- *
- IF( N.GE.MNTHR ) THEN
- *
- IF( WNTVN ) THEN
- *
- * Path 1t(N much larger than M, JOBVT='N')
- * No right singular vectors to be computed
- *
- ITAU = 1
- IWORK = ITAU + M
- *
- * Compute A=L*Q
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Zero out above L
- *
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, A( 1, 2 ),
- $ LDA )
- IE = 1
- ITAUQ = 1
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in A
- * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
- $ IERR )
- IF( WNTUO .OR. WNTUAS ) THEN
- *
- * If left singular vectors desired, generate Q
- * (CWorkspace: need 3*M, prefer 2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- END IF
- IRWORK = IE + M
- NRU = 0
- IF( WNTUO .OR. WNTUAS )
- $ NRU = M
- *
- * Perform bidiagonal QR iteration, computing left singular
- * vectors of A in A if desired
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', M, 0, NRU, 0, S, RWORK( IE ), CDUM, 1,
- $ A, LDA, CDUM, 1, RWORK( IRWORK ), INFO )
- *
- * If left singular vectors desired in U, copy them there
- *
- IF( WNTUAS )
- $ CALL CLACPY( 'F', M, M, A, LDA, U, LDU )
- *
- ELSE IF( WNTVO .AND. WNTUN ) THEN
- *
- * Path 2t(N much larger than M, JOBU='N', JOBVT='O')
- * M right singular vectors to be overwritten on A and
- * no left singular vectors to be computed
- *
- IF( LWORK.GE.M*M+3*M ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IR = 1
- IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*M ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is LDA by M
- *
- LDWRKU = LDA
- CHUNK = N
- LDWRKR = LDA
- ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+M*M ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is M by M
- *
- LDWRKU = LDA
- CHUNK = N
- LDWRKR = M
- ELSE
- *
- * WORK(IU) is M by CHUNK and WORK(IR) is M by M
- *
- LDWRKU = M
- CHUNK = ( LWORK-M*M ) / M
- LDWRKR = M
- END IF
- ITAU = IR + LDWRKR*M
- IWORK = ITAU + M
- *
- * Compute A=L*Q
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to WORK(IR) and zero out above it
- *
- CALL CLACPY( 'L', M, M, A, LDA, WORK( IR ), LDWRKR )
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ WORK( IR+LDWRKR ), LDWRKR )
- *
- * Generate Q in A
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in WORK(IR)
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL CGEBRD( M, M, WORK( IR ), LDWRKR, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Generate right vectors bidiagonalizing L
- * (CWorkspace: need M*M+3*M-1, prefer M*M+2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing right
- * singular vectors of L in WORK(IR)
- * (CWorkspace: need M*M)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', M, M, 0, 0, S, RWORK( IE ),
- $ WORK( IR ), LDWRKR, CDUM, 1, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- IU = ITAUQ
- *
- * Multiply right singular vectors of L in WORK(IR) by Q
- * in A, storing result in WORK(IU) and copying to A
- * (CWorkspace: need M*M+M, prefer M*M+M*N)
- * (RWorkspace: 0)
- *
- DO 30 I = 1, N, CHUNK
- BLK = MIN( N-I+1, CHUNK )
- CALL CGEMM( 'N', 'N', M, BLK, M, CONE, WORK( IR ),
- $ LDWRKR, A( 1, I ), LDA, CZERO,
- $ WORK( IU ), LDWRKU )
- CALL CLACPY( 'F', M, BLK, WORK( IU ), LDWRKU,
- $ A( 1, I ), LDA )
- 30 CONTINUE
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- IE = 1
- ITAUQ = 1
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize A
- * (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
- * (RWorkspace: need M)
- *
- CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Generate right vectors bidiagonalizing A
- * (CWorkspace: need 3*M, prefer 2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing right
- * singular vectors of A in A
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'L', M, N, 0, 0, S, RWORK( IE ), A, LDA,
- $ CDUM, 1, CDUM, 1, RWORK( IRWORK ), INFO )
- *
- END IF
- *
- ELSE IF( WNTVO .AND. WNTUAS ) THEN
- *
- * Path 3t(N much larger than M, JOBU='S' or 'A', JOBVT='O')
- * M right singular vectors to be overwritten on A and
- * M left singular vectors to be computed in U
- *
- IF( LWORK.GE.M*M+3*M ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IR = 1
- IF( LWORK.GE.MAX( WRKBL, LDA*N )+LDA*M ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is LDA by M
- *
- LDWRKU = LDA
- CHUNK = N
- LDWRKR = LDA
- ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N )+M*M ) THEN
- *
- * WORK(IU) is LDA by N and WORK(IR) is M by M
- *
- LDWRKU = LDA
- CHUNK = N
- LDWRKR = M
- ELSE
- *
- * WORK(IU) is M by CHUNK and WORK(IR) is M by M
- *
- LDWRKU = M
- CHUNK = ( LWORK-M*M ) / M
- LDWRKR = M
- END IF
- ITAU = IR + LDWRKR*M
- IWORK = ITAU + M
- *
- * Compute A=L*Q
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to U, zeroing about above it
- *
- CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, U( 1, 2 ),
- $ LDU )
- *
- * Generate Q in A
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in U, copying result to WORK(IR)
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL CGEBRD( M, M, U, LDU, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'U', M, M, U, LDU, WORK( IR ), LDWRKR )
- *
- * Generate right vectors bidiagonalizing L in WORK(IR)
- * (CWorkspace: need M*M+3*M-1, prefer M*M+2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate left vectors bidiagonalizing L in U
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of L in U, and computing right
- * singular vectors of L in WORK(IR)
- * (CWorkspace: need M*M)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
- $ WORK( IR ), LDWRKR, U, LDU, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- IU = ITAUQ
- *
- * Multiply right singular vectors of L in WORK(IR) by Q
- * in A, storing result in WORK(IU) and copying to A
- * (CWorkspace: need M*M+M, prefer M*M+M*N))
- * (RWorkspace: 0)
- *
- DO 40 I = 1, N, CHUNK
- BLK = MIN( N-I+1, CHUNK )
- CALL CGEMM( 'N', 'N', M, BLK, M, CONE, WORK( IR ),
- $ LDWRKR, A( 1, I ), LDA, CZERO,
- $ WORK( IU ), LDWRKU )
- CALL CLACPY( 'F', M, BLK, WORK( IU ), LDWRKU,
- $ A( 1, I ), LDA )
- 40 CONTINUE
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + M
- *
- * Compute A=L*Q
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to U, zeroing out above it
- *
- CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, U( 1, 2 ),
- $ LDU )
- *
- * Generate Q in A
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in U
- * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL CGEBRD( M, M, U, LDU, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply right vectors bidiagonalizing L by Q in A
- * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNMBR( 'P', 'L', 'C', M, N, M, U, LDU,
- $ WORK( ITAUP ), A, LDA, WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate left vectors bidiagonalizing L in U
- * (CWorkspace: need 3*M, prefer 2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in U and computing right
- * singular vectors of A in A
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), A, LDA,
- $ U, LDU, CDUM, 1, RWORK( IRWORK ), INFO )
- *
- END IF
- *
- ELSE IF( WNTVS ) THEN
- *
- IF( WNTUN ) THEN
- *
- * Path 4t(N much larger than M, JOBU='N', JOBVT='S')
- * M right singular vectors to be computed in VT and
- * no left singular vectors to be computed
- *
- IF( LWORK.GE.M*M+3*M ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IR = 1
- IF( LWORK.GE.WRKBL+LDA*M ) THEN
- *
- * WORK(IR) is LDA by M
- *
- LDWRKR = LDA
- ELSE
- *
- * WORK(IR) is M by M
- *
- LDWRKR = M
- END IF
- ITAU = IR + LDWRKR*M
- IWORK = ITAU + M
- *
- * Compute A=L*Q
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to WORK(IR), zeroing out above it
- *
- CALL CLACPY( 'L', M, M, A, LDA, WORK( IR ),
- $ LDWRKR )
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ WORK( IR+LDWRKR ), LDWRKR )
- *
- * Generate Q in A
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in WORK(IR)
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL CGEBRD( M, M, WORK( IR ), LDWRKR, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right vectors bidiagonalizing L in
- * WORK(IR)
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing right
- * singular vectors of L in WORK(IR)
- * (CWorkspace: need M*M)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', M, M, 0, 0, S, RWORK( IE ),
- $ WORK( IR ), LDWRKR, CDUM, 1, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- * Multiply right singular vectors of L in WORK(IR) by
- * Q in A, storing result in VT
- * (CWorkspace: need M*M)
- * (RWorkspace: 0)
- *
- CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IR ),
- $ LDWRKR, A, LDA, CZERO, VT, LDVT )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + M
- *
- * Compute A=L*Q
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy result to VT
- *
- CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Generate Q in VT
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Zero out above L in A
- *
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ A( 1, 2 ), LDA )
- *
- * Bidiagonalize L in A
- * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply right vectors bidiagonalizing L by Q in VT
- * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
- $ WORK( ITAUP ), VT, LDVT,
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing right
- * singular vectors of A in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', M, N, 0, 0, S, RWORK( IE ), VT,
- $ LDVT, CDUM, 1, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- END IF
- *
- ELSE IF( WNTUO ) THEN
- *
- * Path 5t(N much larger than M, JOBU='O', JOBVT='S')
- * M right singular vectors to be computed in VT and
- * M left singular vectors to be overwritten on A
- *
- IF( LWORK.GE.2*M*M+3*M ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IU = 1
- IF( LWORK.GE.WRKBL+2*LDA*M ) THEN
- *
- * WORK(IU) is LDA by M and WORK(IR) is LDA by M
- *
- LDWRKU = LDA
- IR = IU + LDWRKU*M
- LDWRKR = LDA
- ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN
- *
- * WORK(IU) is LDA by M and WORK(IR) is M by M
- *
- LDWRKU = LDA
- IR = IU + LDWRKU*M
- LDWRKR = M
- ELSE
- *
- * WORK(IU) is M by M and WORK(IR) is M by M
- *
- LDWRKU = M
- IR = IU + LDWRKU*M
- LDWRKR = M
- END IF
- ITAU = IR + LDWRKR*M
- IWORK = ITAU + M
- *
- * Compute A=L*Q
- * (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to WORK(IU), zeroing out below it
- *
- CALL CLACPY( 'L', M, M, A, LDA, WORK( IU ),
- $ LDWRKU )
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ WORK( IU+LDWRKU ), LDWRKU )
- *
- * Generate Q in A
- * (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in WORK(IU), copying result to
- * WORK(IR)
- * (CWorkspace: need 2*M*M+3*M,
- * prefer 2*M*M+2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL CGEBRD( M, M, WORK( IU ), LDWRKU, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- CALL CLACPY( 'L', M, M, WORK( IU ), LDWRKU,
- $ WORK( IR ), LDWRKR )
- *
- * Generate right bidiagonalizing vectors in WORK(IU)
- * (CWorkspace: need 2*M*M+3*M-1,
- * prefer 2*M*M+2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate left bidiagonalizing vectors in WORK(IR)
- * (CWorkspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', M, M, M, WORK( IR ), LDWRKR,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of L in WORK(IR) and computing
- * right singular vectors of L in WORK(IU)
- * (CWorkspace: need 2*M*M)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
- $ WORK( IU ), LDWRKU, WORK( IR ),
- $ LDWRKR, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- *
- * Multiply right singular vectors of L in WORK(IU) by
- * Q in A, storing result in VT
- * (CWorkspace: need M*M)
- * (RWorkspace: 0)
- *
- CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
- $ LDWRKU, A, LDA, CZERO, VT, LDVT )
- *
- * Copy left singular vectors of L to A
- * (CWorkspace: need M*M)
- * (RWorkspace: 0)
- *
- CALL CLACPY( 'F', M, M, WORK( IR ), LDWRKR, A,
- $ LDA )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + M
- *
- * Compute A=L*Q, copying result to VT
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Generate Q in VT
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Zero out above L in A
- *
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ A( 1, 2 ), LDA )
- *
- * Bidiagonalize L in A
- * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply right vectors bidiagonalizing L by Q in VT
- * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
- $ WORK( ITAUP ), VT, LDVT,
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Generate left bidiagonalizing vectors of L in A
- * (CWorkspace: need 3*M, prefer 2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in A and computing right
- * singular vectors of A in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
- $ LDVT, A, LDA, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- END IF
- *
- ELSE IF( WNTUAS ) THEN
- *
- * Path 6t(N much larger than M, JOBU='S' or 'A',
- * JOBVT='S')
- * M right singular vectors to be computed in VT and
- * M left singular vectors to be computed in U
- *
- IF( LWORK.GE.M*M+3*M ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IU = 1
- IF( LWORK.GE.WRKBL+LDA*M ) THEN
- *
- * WORK(IU) is LDA by N
- *
- LDWRKU = LDA
- ELSE
- *
- * WORK(IU) is LDA by M
- *
- LDWRKU = M
- END IF
- ITAU = IU + LDWRKU*M
- IWORK = ITAU + M
- *
- * Compute A=L*Q
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to WORK(IU), zeroing out above it
- *
- CALL CLACPY( 'L', M, M, A, LDA, WORK( IU ),
- $ LDWRKU )
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ WORK( IU+LDWRKU ), LDWRKU )
- *
- * Generate Q in A
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in WORK(IU), copying result to U
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL CGEBRD( M, M, WORK( IU ), LDWRKU, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- CALL CLACPY( 'L', M, M, WORK( IU ), LDWRKU, U,
- $ LDU )
- *
- * Generate right bidiagonalizing vectors in WORK(IU)
- * (CWorkspace: need M*M+3*M-1,
- * prefer M*M+2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate left bidiagonalizing vectors in U
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of L in U and computing right
- * singular vectors of L in WORK(IU)
- * (CWorkspace: need M*M)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
- $ WORK( IU ), LDWRKU, U, LDU, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- * Multiply right singular vectors of L in WORK(IU) by
- * Q in A, storing result in VT
- * (CWorkspace: need M*M)
- * (RWorkspace: 0)
- *
- CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
- $ LDWRKU, A, LDA, CZERO, VT, LDVT )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + M
- *
- * Compute A=L*Q, copying result to VT
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Generate Q in VT
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to U, zeroing out above it
- *
- CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ U( 1, 2 ), LDU )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in U
- * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL CGEBRD( M, M, U, LDU, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply right bidiagonalizing vectors in U by Q
- * in VT
- * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNMBR( 'P', 'L', 'C', M, N, M, U, LDU,
- $ WORK( ITAUP ), VT, LDVT,
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Generate left bidiagonalizing vectors in U
- * (CWorkspace: need 3*M, prefer 2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in U and computing right
- * singular vectors of A in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
- $ LDVT, U, LDU, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- END IF
- *
- END IF
- *
- ELSE IF( WNTVA ) THEN
- *
- IF( WNTUN ) THEN
- *
- * Path 7t(N much larger than M, JOBU='N', JOBVT='A')
- * N right singular vectors to be computed in VT and
- * no left singular vectors to be computed
- *
- IF( LWORK.GE.M*M+MAX( N+M, 3*M ) ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IR = 1
- IF( LWORK.GE.WRKBL+LDA*M ) THEN
- *
- * WORK(IR) is LDA by M
- *
- LDWRKR = LDA
- ELSE
- *
- * WORK(IR) is M by M
- *
- LDWRKR = M
- END IF
- ITAU = IR + LDWRKR*M
- IWORK = ITAU + M
- *
- * Compute A=L*Q, copying result to VT
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Copy L to WORK(IR), zeroing out above it
- *
- CALL CLACPY( 'L', M, M, A, LDA, WORK( IR ),
- $ LDWRKR )
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ WORK( IR+LDWRKR ), LDWRKR )
- *
- * Generate Q in VT
- * (CWorkspace: need M*M+M+N, prefer M*M+M+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in WORK(IR)
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL CGEBRD( M, M, WORK( IR ), LDWRKR, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate right bidiagonalizing vectors in WORK(IR)
- * (CWorkspace: need M*M+3*M-1,
- * prefer M*M+2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing right
- * singular vectors of L in WORK(IR)
- * (CWorkspace: need M*M)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', M, M, 0, 0, S, RWORK( IE ),
- $ WORK( IR ), LDWRKR, CDUM, 1, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- * Multiply right singular vectors of L in WORK(IR) by
- * Q in VT, storing result in A
- * (CWorkspace: need M*M)
- * (RWorkspace: 0)
- *
- CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IR ),
- $ LDWRKR, VT, LDVT, CZERO, A, LDA )
- *
- * Copy right singular vectors of A from A to VT
- *
- CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + M
- *
- * Compute A=L*Q, copying result to VT
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Generate Q in VT
- * (CWorkspace: need M+N, prefer M+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Zero out above L in A
- *
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ A( 1, 2 ), LDA )
- *
- * Bidiagonalize L in A
- * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply right bidiagonalizing vectors in A by Q
- * in VT
- * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
- $ WORK( ITAUP ), VT, LDVT,
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing right
- * singular vectors of A in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', M, N, 0, 0, S, RWORK( IE ), VT,
- $ LDVT, CDUM, 1, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- END IF
- *
- ELSE IF( WNTUO ) THEN
- *
- * Path 8t(N much larger than M, JOBU='O', JOBVT='A')
- * N right singular vectors to be computed in VT and
- * M left singular vectors to be overwritten on A
- *
- IF( LWORK.GE.2*M*M+MAX( N+M, 3*M ) ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IU = 1
- IF( LWORK.GE.WRKBL+2*LDA*M ) THEN
- *
- * WORK(IU) is LDA by M and WORK(IR) is LDA by M
- *
- LDWRKU = LDA
- IR = IU + LDWRKU*M
- LDWRKR = LDA
- ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN
- *
- * WORK(IU) is LDA by M and WORK(IR) is M by M
- *
- LDWRKU = LDA
- IR = IU + LDWRKU*M
- LDWRKR = M
- ELSE
- *
- * WORK(IU) is M by M and WORK(IR) is M by M
- *
- LDWRKU = M
- IR = IU + LDWRKU*M
- LDWRKR = M
- END IF
- ITAU = IR + LDWRKR*M
- IWORK = ITAU + M
- *
- * Compute A=L*Q, copying result to VT
- * (CWorkspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Generate Q in VT
- * (CWorkspace: need 2*M*M+M+N, prefer 2*M*M+M+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to WORK(IU), zeroing out above it
- *
- CALL CLACPY( 'L', M, M, A, LDA, WORK( IU ),
- $ LDWRKU )
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ WORK( IU+LDWRKU ), LDWRKU )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in WORK(IU), copying result to
- * WORK(IR)
- * (CWorkspace: need 2*M*M+3*M,
- * prefer 2*M*M+2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL CGEBRD( M, M, WORK( IU ), LDWRKU, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- CALL CLACPY( 'L', M, M, WORK( IU ), LDWRKU,
- $ WORK( IR ), LDWRKR )
- *
- * Generate right bidiagonalizing vectors in WORK(IU)
- * (CWorkspace: need 2*M*M+3*M-1,
- * prefer 2*M*M+2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate left bidiagonalizing vectors in WORK(IR)
- * (CWorkspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', M, M, M, WORK( IR ), LDWRKR,
- $ WORK( ITAUQ ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of L in WORK(IR) and computing
- * right singular vectors of L in WORK(IU)
- * (CWorkspace: need 2*M*M)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
- $ WORK( IU ), LDWRKU, WORK( IR ),
- $ LDWRKR, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- *
- * Multiply right singular vectors of L in WORK(IU) by
- * Q in VT, storing result in A
- * (CWorkspace: need M*M)
- * (RWorkspace: 0)
- *
- CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
- $ LDWRKU, VT, LDVT, CZERO, A, LDA )
- *
- * Copy right singular vectors of A from A to VT
- *
- CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT )
- *
- * Copy left singular vectors of A from WORK(IR) to A
- *
- CALL CLACPY( 'F', M, M, WORK( IR ), LDWRKR, A,
- $ LDA )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + M
- *
- * Compute A=L*Q, copying result to VT
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Generate Q in VT
- * (CWorkspace: need M+N, prefer M+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Zero out above L in A
- *
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ A( 1, 2 ), LDA )
- *
- * Bidiagonalize L in A
- * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply right bidiagonalizing vectors in A by Q
- * in VT
- * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNMBR( 'P', 'L', 'C', M, N, M, A, LDA,
- $ WORK( ITAUP ), VT, LDVT,
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Generate left bidiagonalizing vectors in A
- * (CWorkspace: need 3*M, prefer 2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in A and computing right
- * singular vectors of A in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
- $ LDVT, A, LDA, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- END IF
- *
- ELSE IF( WNTUAS ) THEN
- *
- * Path 9t(N much larger than M, JOBU='S' or 'A',
- * JOBVT='A')
- * N right singular vectors to be computed in VT and
- * M left singular vectors to be computed in U
- *
- IF( LWORK.GE.M*M+MAX( N+M, 3*M ) ) THEN
- *
- * Sufficient workspace for a fast algorithm
- *
- IU = 1
- IF( LWORK.GE.WRKBL+LDA*M ) THEN
- *
- * WORK(IU) is LDA by M
- *
- LDWRKU = LDA
- ELSE
- *
- * WORK(IU) is M by M
- *
- LDWRKU = M
- END IF
- ITAU = IU + LDWRKU*M
- IWORK = ITAU + M
- *
- * Compute A=L*Q, copying result to VT
- * (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Generate Q in VT
- * (CWorkspace: need M*M+M+N, prefer M*M+M+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to WORK(IU), zeroing out above it
- *
- CALL CLACPY( 'L', M, M, A, LDA, WORK( IU ),
- $ LDWRKU )
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ WORK( IU+LDWRKU ), LDWRKU )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in WORK(IU), copying result to U
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL CGEBRD( M, M, WORK( IU ), LDWRKU, S,
- $ RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- CALL CLACPY( 'L', M, M, WORK( IU ), LDWRKU, U,
- $ LDU )
- *
- * Generate right bidiagonalizing vectors in WORK(IU)
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
- $ WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, IERR )
- *
- * Generate left bidiagonalizing vectors in U
- * (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of L in U and computing right
- * singular vectors of L in WORK(IU)
- * (CWorkspace: need M*M)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', M, M, M, 0, S, RWORK( IE ),
- $ WORK( IU ), LDWRKU, U, LDU, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- * Multiply right singular vectors of L in WORK(IU) by
- * Q in VT, storing result in A
- * (CWorkspace: need M*M)
- * (RWorkspace: 0)
- *
- CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IU ),
- $ LDWRKU, VT, LDVT, CZERO, A, LDA )
- *
- * Copy right singular vectors of A from A to VT
- *
- CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT )
- *
- ELSE
- *
- * Insufficient workspace for a fast algorithm
- *
- ITAU = 1
- IWORK = ITAU + M
- *
- * Compute A=L*Q, copying result to VT
- * (CWorkspace: need 2*M, prefer M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Generate Q in VT
- * (CWorkspace: need M+N, prefer M+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Copy L to U, zeroing out above it
- *
- CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ U( 1, 2 ), LDU )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize L in U
- * (CWorkspace: need 3*M, prefer 2*M+2*M*NB)
- * (RWorkspace: need M)
- *
- CALL CGEBRD( M, M, U, LDU, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Multiply right bidiagonalizing vectors in U by Q
- * in VT
- * (CWorkspace: need 2*M+N, prefer 2*M+N*NB)
- * (RWorkspace: 0)
- *
- CALL CUNMBR( 'P', 'L', 'C', M, N, M, U, LDU,
- $ WORK( ITAUP ), VT, LDVT,
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- *
- * Generate left bidiagonalizing vectors in U
- * (CWorkspace: need 3*M, prefer 2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- IRWORK = IE + M
- *
- * Perform bidiagonal QR iteration, computing left
- * singular vectors of A in U and computing right
- * singular vectors of A in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'U', M, N, M, 0, S, RWORK( IE ), VT,
- $ LDVT, U, LDU, CDUM, 1,
- $ RWORK( IRWORK ), INFO )
- *
- END IF
- *
- END IF
- *
- END IF
- *
- ELSE
- *
- * N .LT. MNTHR
- *
- * Path 10t(N greater than M, but not much larger)
- * Reduce to bidiagonal form without LQ decomposition
- *
- IE = 1
- ITAUQ = 1
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
- *
- * Bidiagonalize A
- * (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
- * (RWorkspace: M)
- *
- CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
- $ IERR )
- IF( WNTUAS ) THEN
- *
- * If left singular vectors desired in U, copy result to U
- * and generate left bidiagonalizing vectors in U
- * (CWorkspace: need 3*M-1, prefer 2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
- CALL CUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- END IF
- IF( WNTVAS ) THEN
- *
- * If right singular vectors desired in VT, copy result to
- * VT and generate right bidiagonalizing vectors in VT
- * (CWorkspace: need 2*M+NRVT, prefer 2*M+NRVT*NB)
- * (RWorkspace: 0)
- *
- CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
- IF( WNTVA )
- $ NRVT = N
- IF( WNTVS )
- $ NRVT = M
- CALL CUNGBR( 'P', NRVT, N, M, VT, LDVT, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- END IF
- IF( WNTUO ) THEN
- *
- * If left singular vectors desired in A, generate left
- * bidiagonalizing vectors in A
- * (CWorkspace: need 3*M-1, prefer 2*M+(M-1)*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'Q', M, M, N, A, LDA, WORK( ITAUQ ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- END IF
- IF( WNTVO ) THEN
- *
- * If right singular vectors desired in A, generate right
- * bidiagonalizing vectors in A
- * (CWorkspace: need 3*M, prefer 2*M+M*NB)
- * (RWorkspace: 0)
- *
- CALL CUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, IERR )
- END IF
- IRWORK = IE + M
- IF( WNTUAS .OR. WNTUO )
- $ NRU = M
- IF( WNTUN )
- $ NRU = 0
- IF( WNTVAS .OR. WNTVO )
- $ NCVT = N
- IF( WNTVN )
- $ NCVT = 0
- IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN
- *
- * Perform bidiagonal QR iteration, if desired, computing
- * left singular vectors in U and computing right singular
- * vectors in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'L', M, NCVT, NRU, 0, S, RWORK( IE ), VT,
- $ LDVT, U, LDU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN
- *
- * Perform bidiagonal QR iteration, if desired, computing
- * left singular vectors in U and computing right singular
- * vectors in A
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'L', M, NCVT, NRU, 0, S, RWORK( IE ), A,
- $ LDA, U, LDU, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- ELSE
- *
- * Perform bidiagonal QR iteration, if desired, computing
- * left singular vectors in A and computing right singular
- * vectors in VT
- * (CWorkspace: 0)
- * (RWorkspace: need BDSPAC)
- *
- CALL CBDSQR( 'L', M, NCVT, NRU, 0, S, RWORK( IE ), VT,
- $ LDVT, A, LDA, CDUM, 1, RWORK( IRWORK ),
- $ INFO )
- END IF
- *
- END IF
- *
- END IF
- *
- * Undo scaling if necessary
- *
- IF( ISCL.EQ.1 ) THEN
- IF( ANRM.GT.BIGNUM )
- $ CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
- $ IERR )
- IF( INFO.NE.0 .AND. ANRM.GT.BIGNUM )
- $ CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN-1, 1,
- $ RWORK( IE ), MINMN, IERR )
- IF( ANRM.LT.SMLNUM )
- $ CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
- $ IERR )
- IF( INFO.NE.0 .AND. ANRM.LT.SMLNUM )
- $ CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN-1, 1,
- $ RWORK( IE ), MINMN, IERR )
- END IF
- *
- * Return optimal workspace in WORK(1)
- *
- WORK( 1 ) = MAXWRK
- *
- RETURN
- *
- * End of CGESVD
- *
- END
|