You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ddrvgbx.f 40 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029
  1. *> \brief \b DDRVGBX
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA,
  12. * AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK,
  13. * RWORK, IWORK, NOUT )
  14. *
  15. * .. Scalar Arguments ..
  16. * LOGICAL TSTERR
  17. * INTEGER LA, LAFB, NN, NOUT, NRHS
  18. * DOUBLE PRECISION THRESH
  19. * ..
  20. * .. Array Arguments ..
  21. * LOGICAL DOTYPE( * )
  22. * INTEGER IWORK( * ), NVAL( * )
  23. * DOUBLE PRECISION A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ),
  24. * $ RWORK( * ), S( * ), WORK( * ), X( * ),
  25. * $ XACT( * )
  26. * ..
  27. *
  28. *
  29. *> \par Purpose:
  30. * =============
  31. *>
  32. *> \verbatim
  33. *>
  34. *> DDRVGB tests the driver routines DGBSV, -SVX, and -SVXX.
  35. *>
  36. *> Note that this file is used only when the XBLAS are available,
  37. *> otherwise ddrvgb.f defines this subroutine.
  38. *> \endverbatim
  39. *
  40. * Arguments:
  41. * ==========
  42. *
  43. *> \param[in] DOTYPE
  44. *> \verbatim
  45. *> DOTYPE is LOGICAL array, dimension (NTYPES)
  46. *> The matrix types to be used for testing. Matrices of type j
  47. *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
  48. *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
  49. *> \endverbatim
  50. *>
  51. *> \param[in] NN
  52. *> \verbatim
  53. *> NN is INTEGER
  54. *> The number of values of N contained in the vector NVAL.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] NVAL
  58. *> \verbatim
  59. *> NVAL is INTEGER array, dimension (NN)
  60. *> The values of the matrix column dimension N.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] NRHS
  64. *> \verbatim
  65. *> NRHS is INTEGER
  66. *> The number of right hand side vectors to be generated for
  67. *> each linear system.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] THRESH
  71. *> \verbatim
  72. *> THRESH is DOUBLE PRECISION
  73. *> The threshold value for the test ratios. A result is
  74. *> included in the output file if RESULT >= THRESH. To have
  75. *> every test ratio printed, use THRESH = 0.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] TSTERR
  79. *> \verbatim
  80. *> TSTERR is LOGICAL
  81. *> Flag that indicates whether error exits are to be tested.
  82. *> \endverbatim
  83. *>
  84. *> \param[out] A
  85. *> \verbatim
  86. *> A is DOUBLE PRECISION array, dimension (LA)
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LA
  90. *> \verbatim
  91. *> LA is INTEGER
  92. *> The length of the array A. LA >= (2*NMAX-1)*NMAX
  93. *> where NMAX is the largest entry in NVAL.
  94. *> \endverbatim
  95. *>
  96. *> \param[out] AFB
  97. *> \verbatim
  98. *> AFB is DOUBLE PRECISION array, dimension (LAFB)
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LAFB
  102. *> \verbatim
  103. *> LAFB is INTEGER
  104. *> The length of the array AFB. LAFB >= (3*NMAX-2)*NMAX
  105. *> where NMAX is the largest entry in NVAL.
  106. *> \endverbatim
  107. *>
  108. *> \param[out] ASAV
  109. *> \verbatim
  110. *> ASAV is DOUBLE PRECISION array, dimension (LA)
  111. *> \endverbatim
  112. *>
  113. *> \param[out] B
  114. *> \verbatim
  115. *> B is DOUBLE PRECISION array, dimension (NMAX*NRHS)
  116. *> \endverbatim
  117. *>
  118. *> \param[out] BSAV
  119. *> \verbatim
  120. *> BSAV is DOUBLE PRECISION array, dimension (NMAX*NRHS)
  121. *> \endverbatim
  122. *>
  123. *> \param[out] X
  124. *> \verbatim
  125. *> X is DOUBLE PRECISION array, dimension (NMAX*NRHS)
  126. *> \endverbatim
  127. *>
  128. *> \param[out] XACT
  129. *> \verbatim
  130. *> XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS)
  131. *> \endverbatim
  132. *>
  133. *> \param[out] S
  134. *> \verbatim
  135. *> S is DOUBLE PRECISION array, dimension (2*NMAX)
  136. *> \endverbatim
  137. *>
  138. *> \param[out] WORK
  139. *> \verbatim
  140. *> WORK is DOUBLE PRECISION array, dimension
  141. *> (NMAX*max(3,NRHS,NMAX))
  142. *> \endverbatim
  143. *>
  144. *> \param[out] RWORK
  145. *> \verbatim
  146. *> RWORK is DOUBLE PRECISION array, dimension
  147. *> (max(NMAX,2*NRHS))
  148. *> \endverbatim
  149. *>
  150. *> \param[out] IWORK
  151. *> \verbatim
  152. *> IWORK is INTEGER array, dimension (2*NMAX)
  153. *> \endverbatim
  154. *>
  155. *> \param[in] NOUT
  156. *> \verbatim
  157. *> NOUT is INTEGER
  158. *> The unit number for output.
  159. *> \endverbatim
  160. *
  161. * Authors:
  162. * ========
  163. *
  164. *> \author Univ. of Tennessee
  165. *> \author Univ. of California Berkeley
  166. *> \author Univ. of Colorado Denver
  167. *> \author NAG Ltd.
  168. *
  169. *> \date December 2016
  170. *
  171. *> \ingroup double_lin
  172. *
  173. * =====================================================================
  174. SUBROUTINE DDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA,
  175. $ AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK,
  176. $ RWORK, IWORK, NOUT )
  177. *
  178. * -- LAPACK test routine (version 3.7.0) --
  179. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  180. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  181. * December 2016
  182. *
  183. * .. Scalar Arguments ..
  184. LOGICAL TSTERR
  185. INTEGER LA, LAFB, NN, NOUT, NRHS
  186. DOUBLE PRECISION THRESH
  187. * ..
  188. * .. Array Arguments ..
  189. LOGICAL DOTYPE( * )
  190. INTEGER IWORK( * ), NVAL( * )
  191. DOUBLE PRECISION A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ),
  192. $ RWORK( * ), S( * ), WORK( * ), X( * ),
  193. $ XACT( * )
  194. * ..
  195. *
  196. * =====================================================================
  197. *
  198. * .. Parameters ..
  199. DOUBLE PRECISION ONE, ZERO
  200. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  201. INTEGER NTYPES
  202. PARAMETER ( NTYPES = 8 )
  203. INTEGER NTESTS
  204. PARAMETER ( NTESTS = 7 )
  205. INTEGER NTRAN
  206. PARAMETER ( NTRAN = 3 )
  207. * ..
  208. * .. Local Scalars ..
  209. LOGICAL EQUIL, NOFACT, PREFAC, TRFCON, ZEROT
  210. CHARACTER DIST, EQUED, FACT, TRANS, TYPE, XTYPE
  211. CHARACTER*3 PATH
  212. INTEGER I, I1, I2, IEQUED, IFACT, IKL, IKU, IMAT, IN,
  213. $ INFO, IOFF, ITRAN, IZERO, J, K, K1, KL, KU,
  214. $ LDA, LDAFB, LDB, MODE, N, NB, NBMIN, NERRS,
  215. $ NFACT, NFAIL, NIMAT, NKL, NKU, NRUN, NT,
  216. $ N_ERR_BNDS
  217. DOUBLE PRECISION AINVNM, AMAX, ANORM, ANORMI, ANORMO, ANRMPV,
  218. $ CNDNUM, COLCND, RCOND, RCONDC, RCONDI, RCONDO,
  219. $ ROLDC, ROLDI, ROLDO, ROWCND, RPVGRW,
  220. $ RPVGRW_SVXX
  221. * ..
  222. * .. Local Arrays ..
  223. CHARACTER EQUEDS( 4 ), FACTS( 3 ), TRANSS( NTRAN )
  224. INTEGER ISEED( 4 ), ISEEDY( 4 )
  225. DOUBLE PRECISION RESULT( NTESTS ), BERR( NRHS ),
  226. $ ERRBNDS_N( NRHS, 3 ), ERRBNDS_C( NRHS, 3 )
  227. * ..
  228. * .. External Functions ..
  229. LOGICAL LSAME
  230. DOUBLE PRECISION DGET06, DLAMCH, DLANGB, DLANGE, DLANTB,
  231. $ DLA_GBRPVGRW
  232. EXTERNAL LSAME, DGET06, DLAMCH, DLANGB, DLANGE, DLANTB,
  233. $ DLA_GBRPVGRW
  234. * ..
  235. * .. External Subroutines ..
  236. EXTERNAL ALADHD, ALAERH, ALASVM, DERRVX, DGBEQU, DGBSV,
  237. $ DGBSVX, DGBT01, DGBT02, DGBT05, DGBTRF, DGBTRS,
  238. $ DGET04, DLACPY, DLAQGB, DLARHS, DLASET, DLATB4,
  239. $ DLATMS, XLAENV, DGBSVXX, DGBEQUB
  240. * ..
  241. * .. Intrinsic Functions ..
  242. INTRINSIC ABS, MAX, MIN
  243. * ..
  244. * .. Scalars in Common ..
  245. LOGICAL LERR, OK
  246. CHARACTER*32 SRNAMT
  247. INTEGER INFOT, NUNIT
  248. * ..
  249. * .. Common blocks ..
  250. COMMON / INFOC / INFOT, NUNIT, OK, LERR
  251. COMMON / SRNAMC / SRNAMT
  252. * ..
  253. * .. Data statements ..
  254. DATA ISEEDY / 1988, 1989, 1990, 1991 /
  255. DATA TRANSS / 'N', 'T', 'C' /
  256. DATA FACTS / 'F', 'N', 'E' /
  257. DATA EQUEDS / 'N', 'R', 'C', 'B' /
  258. * ..
  259. * .. Executable Statements ..
  260. *
  261. * Initialize constants and the random number seed.
  262. *
  263. PATH( 1: 1 ) = 'Double precision'
  264. PATH( 2: 3 ) = 'GB'
  265. NRUN = 0
  266. NFAIL = 0
  267. NERRS = 0
  268. DO 10 I = 1, 4
  269. ISEED( I ) = ISEEDY( I )
  270. 10 CONTINUE
  271. *
  272. * Test the error exits
  273. *
  274. IF( TSTERR )
  275. $ CALL DERRVX( PATH, NOUT )
  276. INFOT = 0
  277. *
  278. * Set the block size and minimum block size for testing.
  279. *
  280. NB = 1
  281. NBMIN = 2
  282. CALL XLAENV( 1, NB )
  283. CALL XLAENV( 2, NBMIN )
  284. *
  285. * Do for each value of N in NVAL
  286. *
  287. DO 150 IN = 1, NN
  288. N = NVAL( IN )
  289. LDB = MAX( N, 1 )
  290. XTYPE = 'N'
  291. *
  292. * Set limits on the number of loop iterations.
  293. *
  294. NKL = MAX( 1, MIN( N, 4 ) )
  295. IF( N.EQ.0 )
  296. $ NKL = 1
  297. NKU = NKL
  298. NIMAT = NTYPES
  299. IF( N.LE.0 )
  300. $ NIMAT = 1
  301. *
  302. DO 140 IKL = 1, NKL
  303. *
  304. * Do for KL = 0, N-1, (3N-1)/4, and (N+1)/4. This order makes
  305. * it easier to skip redundant values for small values of N.
  306. *
  307. IF( IKL.EQ.1 ) THEN
  308. KL = 0
  309. ELSE IF( IKL.EQ.2 ) THEN
  310. KL = MAX( N-1, 0 )
  311. ELSE IF( IKL.EQ.3 ) THEN
  312. KL = ( 3*N-1 ) / 4
  313. ELSE IF( IKL.EQ.4 ) THEN
  314. KL = ( N+1 ) / 4
  315. END IF
  316. DO 130 IKU = 1, NKU
  317. *
  318. * Do for KU = 0, N-1, (3N-1)/4, and (N+1)/4. This order
  319. * makes it easier to skip redundant values for small
  320. * values of N.
  321. *
  322. IF( IKU.EQ.1 ) THEN
  323. KU = 0
  324. ELSE IF( IKU.EQ.2 ) THEN
  325. KU = MAX( N-1, 0 )
  326. ELSE IF( IKU.EQ.3 ) THEN
  327. KU = ( 3*N-1 ) / 4
  328. ELSE IF( IKU.EQ.4 ) THEN
  329. KU = ( N+1 ) / 4
  330. END IF
  331. *
  332. * Check that A and AFB are big enough to generate this
  333. * matrix.
  334. *
  335. LDA = KL + KU + 1
  336. LDAFB = 2*KL + KU + 1
  337. IF( LDA*N.GT.LA .OR. LDAFB*N.GT.LAFB ) THEN
  338. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  339. $ CALL ALADHD( NOUT, PATH )
  340. IF( LDA*N.GT.LA ) THEN
  341. WRITE( NOUT, FMT = 9999 )LA, N, KL, KU,
  342. $ N*( KL+KU+1 )
  343. NERRS = NERRS + 1
  344. END IF
  345. IF( LDAFB*N.GT.LAFB ) THEN
  346. WRITE( NOUT, FMT = 9998 )LAFB, N, KL, KU,
  347. $ N*( 2*KL+KU+1 )
  348. NERRS = NERRS + 1
  349. END IF
  350. GO TO 130
  351. END IF
  352. *
  353. DO 120 IMAT = 1, NIMAT
  354. *
  355. * Do the tests only if DOTYPE( IMAT ) is true.
  356. *
  357. IF( .NOT.DOTYPE( IMAT ) )
  358. $ GO TO 120
  359. *
  360. * Skip types 2, 3, or 4 if the matrix is too small.
  361. *
  362. ZEROT = IMAT.GE.2 .AND. IMAT.LE.4
  363. IF( ZEROT .AND. N.LT.IMAT-1 )
  364. $ GO TO 120
  365. *
  366. * Set up parameters with DLATB4 and generate a
  367. * test matrix with DLATMS.
  368. *
  369. CALL DLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
  370. $ MODE, CNDNUM, DIST )
  371. RCONDC = ONE / CNDNUM
  372. *
  373. SRNAMT = 'DLATMS'
  374. CALL DLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
  375. $ CNDNUM, ANORM, KL, KU, 'Z', A, LDA, WORK,
  376. $ INFO )
  377. *
  378. * Check the error code from DLATMS.
  379. *
  380. IF( INFO.NE.0 ) THEN
  381. CALL ALAERH( PATH, 'DLATMS', INFO, 0, ' ', N, N,
  382. $ KL, KU, -1, IMAT, NFAIL, NERRS, NOUT )
  383. GO TO 120
  384. END IF
  385. *
  386. * For types 2, 3, and 4, zero one or more columns of
  387. * the matrix to test that INFO is returned correctly.
  388. *
  389. IZERO = 0
  390. IF( ZEROT ) THEN
  391. IF( IMAT.EQ.2 ) THEN
  392. IZERO = 1
  393. ELSE IF( IMAT.EQ.3 ) THEN
  394. IZERO = N
  395. ELSE
  396. IZERO = N / 2 + 1
  397. END IF
  398. IOFF = ( IZERO-1 )*LDA
  399. IF( IMAT.LT.4 ) THEN
  400. I1 = MAX( 1, KU+2-IZERO )
  401. I2 = MIN( KL+KU+1, KU+1+( N-IZERO ) )
  402. DO 20 I = I1, I2
  403. A( IOFF+I ) = ZERO
  404. 20 CONTINUE
  405. ELSE
  406. DO 40 J = IZERO, N
  407. DO 30 I = MAX( 1, KU+2-J ),
  408. $ MIN( KL+KU+1, KU+1+( N-J ) )
  409. A( IOFF+I ) = ZERO
  410. 30 CONTINUE
  411. IOFF = IOFF + LDA
  412. 40 CONTINUE
  413. END IF
  414. END IF
  415. *
  416. * Save a copy of the matrix A in ASAV.
  417. *
  418. CALL DLACPY( 'Full', KL+KU+1, N, A, LDA, ASAV, LDA )
  419. *
  420. DO 110 IEQUED = 1, 4
  421. EQUED = EQUEDS( IEQUED )
  422. IF( IEQUED.EQ.1 ) THEN
  423. NFACT = 3
  424. ELSE
  425. NFACT = 1
  426. END IF
  427. *
  428. DO 100 IFACT = 1, NFACT
  429. FACT = FACTS( IFACT )
  430. PREFAC = LSAME( FACT, 'F' )
  431. NOFACT = LSAME( FACT, 'N' )
  432. EQUIL = LSAME( FACT, 'E' )
  433. *
  434. IF( ZEROT ) THEN
  435. IF( PREFAC )
  436. $ GO TO 100
  437. RCONDO = ZERO
  438. RCONDI = ZERO
  439. *
  440. ELSE IF( .NOT.NOFACT ) THEN
  441. *
  442. * Compute the condition number for comparison
  443. * with the value returned by DGESVX (FACT =
  444. * 'N' reuses the condition number from the
  445. * previous iteration with FACT = 'F').
  446. *
  447. CALL DLACPY( 'Full', KL+KU+1, N, ASAV, LDA,
  448. $ AFB( KL+1 ), LDAFB )
  449. IF( EQUIL .OR. IEQUED.GT.1 ) THEN
  450. *
  451. * Compute row and column scale factors to
  452. * equilibrate the matrix A.
  453. *
  454. CALL DGBEQU( N, N, KL, KU, AFB( KL+1 ),
  455. $ LDAFB, S, S( N+1 ), ROWCND,
  456. $ COLCND, AMAX, INFO )
  457. IF( INFO.EQ.0 .AND. N.GT.0 ) THEN
  458. IF( LSAME( EQUED, 'R' ) ) THEN
  459. ROWCND = ZERO
  460. COLCND = ONE
  461. ELSE IF( LSAME( EQUED, 'C' ) ) THEN
  462. ROWCND = ONE
  463. COLCND = ZERO
  464. ELSE IF( LSAME( EQUED, 'B' ) ) THEN
  465. ROWCND = ZERO
  466. COLCND = ZERO
  467. END IF
  468. *
  469. * Equilibrate the matrix.
  470. *
  471. CALL DLAQGB( N, N, KL, KU, AFB( KL+1 ),
  472. $ LDAFB, S, S( N+1 ),
  473. $ ROWCND, COLCND, AMAX,
  474. $ EQUED )
  475. END IF
  476. END IF
  477. *
  478. * Save the condition number of the
  479. * non-equilibrated system for use in DGET04.
  480. *
  481. IF( EQUIL ) THEN
  482. ROLDO = RCONDO
  483. ROLDI = RCONDI
  484. END IF
  485. *
  486. * Compute the 1-norm and infinity-norm of A.
  487. *
  488. ANORMO = DLANGB( '1', N, KL, KU, AFB( KL+1 ),
  489. $ LDAFB, RWORK )
  490. ANORMI = DLANGB( 'I', N, KL, KU, AFB( KL+1 ),
  491. $ LDAFB, RWORK )
  492. *
  493. * Factor the matrix A.
  494. *
  495. CALL DGBTRF( N, N, KL, KU, AFB, LDAFB, IWORK,
  496. $ INFO )
  497. *
  498. * Form the inverse of A.
  499. *
  500. CALL DLASET( 'Full', N, N, ZERO, ONE, WORK,
  501. $ LDB )
  502. SRNAMT = 'DGBTRS'
  503. CALL DGBTRS( 'No transpose', N, KL, KU, N,
  504. $ AFB, LDAFB, IWORK, WORK, LDB,
  505. $ INFO )
  506. *
  507. * Compute the 1-norm condition number of A.
  508. *
  509. AINVNM = DLANGE( '1', N, N, WORK, LDB,
  510. $ RWORK )
  511. IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
  512. RCONDO = ONE
  513. ELSE
  514. RCONDO = ( ONE / ANORMO ) / AINVNM
  515. END IF
  516. *
  517. * Compute the infinity-norm condition number
  518. * of A.
  519. *
  520. AINVNM = DLANGE( 'I', N, N, WORK, LDB,
  521. $ RWORK )
  522. IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
  523. RCONDI = ONE
  524. ELSE
  525. RCONDI = ( ONE / ANORMI ) / AINVNM
  526. END IF
  527. END IF
  528. *
  529. DO 90 ITRAN = 1, NTRAN
  530. *
  531. * Do for each value of TRANS.
  532. *
  533. TRANS = TRANSS( ITRAN )
  534. IF( ITRAN.EQ.1 ) THEN
  535. RCONDC = RCONDO
  536. ELSE
  537. RCONDC = RCONDI
  538. END IF
  539. *
  540. * Restore the matrix A.
  541. *
  542. CALL DLACPY( 'Full', KL+KU+1, N, ASAV, LDA,
  543. $ A, LDA )
  544. *
  545. * Form an exact solution and set the right hand
  546. * side.
  547. *
  548. SRNAMT = 'DLARHS'
  549. CALL DLARHS( PATH, XTYPE, 'Full', TRANS, N,
  550. $ N, KL, KU, NRHS, A, LDA, XACT,
  551. $ LDB, B, LDB, ISEED, INFO )
  552. XTYPE = 'C'
  553. CALL DLACPY( 'Full', N, NRHS, B, LDB, BSAV,
  554. $ LDB )
  555. *
  556. IF( NOFACT .AND. ITRAN.EQ.1 ) THEN
  557. *
  558. * --- Test DGBSV ---
  559. *
  560. * Compute the LU factorization of the matrix
  561. * and solve the system.
  562. *
  563. CALL DLACPY( 'Full', KL+KU+1, N, A, LDA,
  564. $ AFB( KL+1 ), LDAFB )
  565. CALL DLACPY( 'Full', N, NRHS, B, LDB, X,
  566. $ LDB )
  567. *
  568. SRNAMT = 'DGBSV '
  569. CALL DGBSV( N, KL, KU, NRHS, AFB, LDAFB,
  570. $ IWORK, X, LDB, INFO )
  571. *
  572. * Check error code from DGBSV .
  573. *
  574. IF( INFO.NE.IZERO )
  575. $ CALL ALAERH( PATH, 'DGBSV ', INFO,
  576. $ IZERO, ' ', N, N, KL, KU,
  577. $ NRHS, IMAT, NFAIL, NERRS,
  578. $ NOUT )
  579. *
  580. * Reconstruct matrix from factors and
  581. * compute residual.
  582. *
  583. CALL DGBT01( N, N, KL, KU, A, LDA, AFB,
  584. $ LDAFB, IWORK, WORK,
  585. $ RESULT( 1 ) )
  586. NT = 1
  587. IF( IZERO.EQ.0 ) THEN
  588. *
  589. * Compute residual of the computed
  590. * solution.
  591. *
  592. CALL DLACPY( 'Full', N, NRHS, B, LDB,
  593. $ WORK, LDB )
  594. CALL DGBT02( 'No transpose', N, N, KL,
  595. $ KU, NRHS, A, LDA, X, LDB,
  596. $ WORK, LDB, RESULT( 2 ) )
  597. *
  598. * Check solution from generated exact
  599. * solution.
  600. *
  601. CALL DGET04( N, NRHS, X, LDB, XACT,
  602. $ LDB, RCONDC, RESULT( 3 ) )
  603. NT = 3
  604. END IF
  605. *
  606. * Print information about the tests that did
  607. * not pass the threshold.
  608. *
  609. DO 50 K = 1, NT
  610. IF( RESULT( K ).GE.THRESH ) THEN
  611. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  612. $ CALL ALADHD( NOUT, PATH )
  613. WRITE( NOUT, FMT = 9997 )'DGBSV ',
  614. $ N, KL, KU, IMAT, K, RESULT( K )
  615. NFAIL = NFAIL + 1
  616. END IF
  617. 50 CONTINUE
  618. NRUN = NRUN + NT
  619. END IF
  620. *
  621. * --- Test DGBSVX ---
  622. *
  623. IF( .NOT.PREFAC )
  624. $ CALL DLASET( 'Full', 2*KL+KU+1, N, ZERO,
  625. $ ZERO, AFB, LDAFB )
  626. CALL DLASET( 'Full', N, NRHS, ZERO, ZERO, X,
  627. $ LDB )
  628. IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
  629. *
  630. * Equilibrate the matrix if FACT = 'F' and
  631. * EQUED = 'R', 'C', or 'B'.
  632. *
  633. CALL DLAQGB( N, N, KL, KU, A, LDA, S,
  634. $ S( N+1 ), ROWCND, COLCND,
  635. $ AMAX, EQUED )
  636. END IF
  637. *
  638. * Solve the system and compute the condition
  639. * number and error bounds using DGBSVX.
  640. *
  641. SRNAMT = 'DGBSVX'
  642. CALL DGBSVX( FACT, TRANS, N, KL, KU, NRHS, A,
  643. $ LDA, AFB, LDAFB, IWORK, EQUED,
  644. $ S, S( N+1 ), B, LDB, X, LDB,
  645. $ RCOND, RWORK, RWORK( NRHS+1 ),
  646. $ WORK, IWORK( N+1 ), INFO )
  647. *
  648. * Check the error code from DGBSVX.
  649. *
  650. IF( INFO.NE.IZERO )
  651. $ CALL ALAERH( PATH, 'DGBSVX', INFO, IZERO,
  652. $ FACT // TRANS, N, N, KL, KU,
  653. $ NRHS, IMAT, NFAIL, NERRS,
  654. $ NOUT )
  655. *
  656. * Compare WORK(1) from DGBSVX with the computed
  657. * reciprocal pivot growth factor RPVGRW
  658. *
  659. IF( INFO.NE.0 ) THEN
  660. ANRMPV = ZERO
  661. DO 70 J = 1, INFO
  662. DO 60 I = MAX( KU+2-J, 1 ),
  663. $ MIN( N+KU+1-J, KL+KU+1 )
  664. ANRMPV = MAX( ANRMPV,
  665. $ ABS( A( I+( J-1 )*LDA ) ) )
  666. 60 CONTINUE
  667. 70 CONTINUE
  668. RPVGRW = DLANTB( 'M', 'U', 'N', INFO,
  669. $ MIN( INFO-1, KL+KU ),
  670. $ AFB( MAX( 1, KL+KU+2-INFO ) ),
  671. $ LDAFB, WORK )
  672. IF( RPVGRW.EQ.ZERO ) THEN
  673. RPVGRW = ONE
  674. ELSE
  675. RPVGRW = ANRMPV / RPVGRW
  676. END IF
  677. ELSE
  678. RPVGRW = DLANTB( 'M', 'U', 'N', N, KL+KU,
  679. $ AFB, LDAFB, WORK )
  680. IF( RPVGRW.EQ.ZERO ) THEN
  681. RPVGRW = ONE
  682. ELSE
  683. RPVGRW = DLANGB( 'M', N, KL, KU, A,
  684. $ LDA, WORK ) / RPVGRW
  685. END IF
  686. END IF
  687. RESULT( 7 ) = ABS( RPVGRW-WORK( 1 ) ) /
  688. $ MAX( WORK( 1 ), RPVGRW ) /
  689. $ DLAMCH( 'E' )
  690. *
  691. IF( .NOT.PREFAC ) THEN
  692. *
  693. * Reconstruct matrix from factors and
  694. * compute residual.
  695. *
  696. CALL DGBT01( N, N, KL, KU, A, LDA, AFB,
  697. $ LDAFB, IWORK, WORK,
  698. $ RESULT( 1 ) )
  699. K1 = 1
  700. ELSE
  701. K1 = 2
  702. END IF
  703. *
  704. IF( INFO.EQ.0 ) THEN
  705. TRFCON = .FALSE.
  706. *
  707. * Compute residual of the computed solution.
  708. *
  709. CALL DLACPY( 'Full', N, NRHS, BSAV, LDB,
  710. $ WORK, LDB )
  711. CALL DGBT02( TRANS, N, N, KL, KU, NRHS,
  712. $ ASAV, LDA, X, LDB, WORK, LDB,
  713. $ RESULT( 2 ) )
  714. *
  715. * Check solution from generated exact
  716. * solution.
  717. *
  718. IF( NOFACT .OR. ( PREFAC .AND.
  719. $ LSAME( EQUED, 'N' ) ) ) THEN
  720. CALL DGET04( N, NRHS, X, LDB, XACT,
  721. $ LDB, RCONDC, RESULT( 3 ) )
  722. ELSE
  723. IF( ITRAN.EQ.1 ) THEN
  724. ROLDC = ROLDO
  725. ELSE
  726. ROLDC = ROLDI
  727. END IF
  728. CALL DGET04( N, NRHS, X, LDB, XACT,
  729. $ LDB, ROLDC, RESULT( 3 ) )
  730. END IF
  731. *
  732. * Check the error bounds from iterative
  733. * refinement.
  734. *
  735. CALL DGBT05( TRANS, N, KL, KU, NRHS, ASAV,
  736. $ LDA, B, LDB, X, LDB, XACT,
  737. $ LDB, RWORK, RWORK( NRHS+1 ),
  738. $ RESULT( 4 ) )
  739. ELSE
  740. TRFCON = .TRUE.
  741. END IF
  742. *
  743. * Compare RCOND from DGBSVX with the computed
  744. * value in RCONDC.
  745. *
  746. RESULT( 6 ) = DGET06( RCOND, RCONDC )
  747. *
  748. * Print information about the tests that did
  749. * not pass the threshold.
  750. *
  751. IF( .NOT.TRFCON ) THEN
  752. DO 80 K = K1, NTESTS
  753. IF( RESULT( K ).GE.THRESH ) THEN
  754. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  755. $ CALL ALADHD( NOUT, PATH )
  756. IF( PREFAC ) THEN
  757. WRITE( NOUT, FMT = 9995 )
  758. $ 'DGBSVX', FACT, TRANS, N, KL,
  759. $ KU, EQUED, IMAT, K,
  760. $ RESULT( K )
  761. ELSE
  762. WRITE( NOUT, FMT = 9996 )
  763. $ 'DGBSVX', FACT, TRANS, N, KL,
  764. $ KU, IMAT, K, RESULT( K )
  765. END IF
  766. NFAIL = NFAIL + 1
  767. END IF
  768. 80 CONTINUE
  769. NRUN = NRUN + 7 - K1
  770. ELSE
  771. IF( RESULT( 1 ).GE.THRESH .AND. .NOT.
  772. $ PREFAC ) THEN
  773. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  774. $ CALL ALADHD( NOUT, PATH )
  775. IF( PREFAC ) THEN
  776. WRITE( NOUT, FMT = 9995 )'DGBSVX',
  777. $ FACT, TRANS, N, KL, KU, EQUED,
  778. $ IMAT, 1, RESULT( 1 )
  779. ELSE
  780. WRITE( NOUT, FMT = 9996 )'DGBSVX',
  781. $ FACT, TRANS, N, KL, KU, IMAT, 1,
  782. $ RESULT( 1 )
  783. END IF
  784. NFAIL = NFAIL + 1
  785. NRUN = NRUN + 1
  786. END IF
  787. IF( RESULT( 6 ).GE.THRESH ) THEN
  788. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  789. $ CALL ALADHD( NOUT, PATH )
  790. IF( PREFAC ) THEN
  791. WRITE( NOUT, FMT = 9995 )'DGBSVX',
  792. $ FACT, TRANS, N, KL, KU, EQUED,
  793. $ IMAT, 6, RESULT( 6 )
  794. ELSE
  795. WRITE( NOUT, FMT = 9996 )'DGBSVX',
  796. $ FACT, TRANS, N, KL, KU, IMAT, 6,
  797. $ RESULT( 6 )
  798. END IF
  799. NFAIL = NFAIL + 1
  800. NRUN = NRUN + 1
  801. END IF
  802. IF( RESULT( 7 ).GE.THRESH ) THEN
  803. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  804. $ CALL ALADHD( NOUT, PATH )
  805. IF( PREFAC ) THEN
  806. WRITE( NOUT, FMT = 9995 )'DGBSVX',
  807. $ FACT, TRANS, N, KL, KU, EQUED,
  808. $ IMAT, 7, RESULT( 7 )
  809. ELSE
  810. WRITE( NOUT, FMT = 9996 )'DGBSVX',
  811. $ FACT, TRANS, N, KL, KU, IMAT, 7,
  812. $ RESULT( 7 )
  813. END IF
  814. NFAIL = NFAIL + 1
  815. NRUN = NRUN + 1
  816. END IF
  817. *
  818. END IF
  819. *
  820. * --- Test DGBSVXX ---
  821. *
  822. * Restore the matrices A and B.
  823. *
  824. CALL DLACPY( 'Full', KL+KU+1, N, ASAV, LDA, A,
  825. $ LDA )
  826. CALL DLACPY( 'Full', N, NRHS, BSAV, LDB, B, LDB )
  827. IF( .NOT.PREFAC )
  828. $ CALL DLASET( 'Full', 2*KL+KU+1, N, ZERO, ZERO,
  829. $ AFB, LDAFB )
  830. CALL DLASET( 'Full', N, NRHS, ZERO, ZERO, X, LDB )
  831. IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
  832. *
  833. * Equilibrate the matrix if FACT = 'F' and
  834. * EQUED = 'R', 'C', or 'B'.
  835. *
  836. CALL DLAQGB( N, N, KL, KU, A, LDA, S, S( N+1 ),
  837. $ ROWCND, COLCND, AMAX, EQUED )
  838. END IF
  839. *
  840. * Solve the system and compute the condition number
  841. * and error bounds using DGBSVXX.
  842. *
  843. SRNAMT = 'DGBSVXX'
  844. N_ERR_BNDS = 3
  845. CALL DGBSVXX( FACT, TRANS, N, KL, KU, NRHS, A, LDA,
  846. $ AFB, LDAFB, IWORK, EQUED, S, S( N+1 ), B, LDB,
  847. $ X, LDB, RCOND, RPVGRW_SVXX, BERR, N_ERR_BNDS,
  848. $ ERRBNDS_N, ERRBNDS_C, 0, ZERO, WORK,
  849. $ IWORK( N+1 ), INFO )
  850. *
  851. * Check the error code from DGBSVXX.
  852. *
  853. IF( INFO.EQ.N+1 ) GOTO 90
  854. IF( INFO.NE.IZERO ) THEN
  855. CALL ALAERH( PATH, 'DGBSVXX', INFO, IZERO,
  856. $ FACT // TRANS, N, N, -1, -1, NRHS,
  857. $ IMAT, NFAIL, NERRS, NOUT )
  858. GOTO 90
  859. END IF
  860. *
  861. * Compare rpvgrw_svxx from DGBSVXX with the computed
  862. * reciprocal pivot growth factor RPVGRW
  863. *
  864. IF ( INFO .GT. 0 .AND. INFO .LT. N+1 ) THEN
  865. RPVGRW = DLA_GBRPVGRW(N, KL, KU, INFO, A, LDA,
  866. $ AFB, LDAFB)
  867. ELSE
  868. RPVGRW = DLA_GBRPVGRW(N, KL, KU, N, A, LDA,
  869. $ AFB, LDAFB)
  870. ENDIF
  871. RESULT( 7 ) = ABS( RPVGRW-rpvgrw_svxx ) /
  872. $ MAX( rpvgrw_svxx, RPVGRW ) /
  873. $ DLAMCH( 'E' )
  874. *
  875. IF( .NOT.PREFAC ) THEN
  876. *
  877. * Reconstruct matrix from factors and compute
  878. * residual.
  879. *
  880. CALL DGBT01( N, N, KL, KU, A, LDA, AFB, LDAFB,
  881. $ IWORK, WORK, RESULT( 1 ) )
  882. K1 = 1
  883. ELSE
  884. K1 = 2
  885. END IF
  886. *
  887. IF( INFO.EQ.0 ) THEN
  888. TRFCON = .FALSE.
  889. *
  890. * Compute residual of the computed solution.
  891. *
  892. CALL DLACPY( 'Full', N, NRHS, BSAV, LDB, WORK,
  893. $ LDB )
  894. CALL DGBT02( TRANS, N, N, KL, KU, NRHS, ASAV,
  895. $ LDA, X, LDB, WORK, LDB,
  896. $ RESULT( 2 ) )
  897. *
  898. * Check solution from generated exact solution.
  899. *
  900. IF( NOFACT .OR. ( PREFAC .AND. LSAME( EQUED,
  901. $ 'N' ) ) ) THEN
  902. CALL DGET04( N, NRHS, X, LDB, XACT, LDB,
  903. $ RCONDC, RESULT( 3 ) )
  904. ELSE
  905. IF( ITRAN.EQ.1 ) THEN
  906. ROLDC = ROLDO
  907. ELSE
  908. ROLDC = ROLDI
  909. END IF
  910. CALL DGET04( N, NRHS, X, LDB, XACT, LDB,
  911. $ ROLDC, RESULT( 3 ) )
  912. END IF
  913. ELSE
  914. TRFCON = .TRUE.
  915. END IF
  916. *
  917. * Compare RCOND from DGBSVXX with the computed value
  918. * in RCONDC.
  919. *
  920. RESULT( 6 ) = DGET06( RCOND, RCONDC )
  921. *
  922. * Print information about the tests that did not pass
  923. * the threshold.
  924. *
  925. IF( .NOT.TRFCON ) THEN
  926. DO 45 K = K1, NTESTS
  927. IF( RESULT( K ).GE.THRESH ) THEN
  928. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  929. $ CALL ALADHD( NOUT, PATH )
  930. IF( PREFAC ) THEN
  931. WRITE( NOUT, FMT = 9995 )'DGBSVXX',
  932. $ FACT, TRANS, N, KL, KU, EQUED,
  933. $ IMAT, K, RESULT( K )
  934. ELSE
  935. WRITE( NOUT, FMT = 9996 )'DGBSVXX',
  936. $ FACT, TRANS, N, KL, KU, IMAT, K,
  937. $ RESULT( K )
  938. END IF
  939. NFAIL = NFAIL + 1
  940. END IF
  941. 45 CONTINUE
  942. NRUN = NRUN + 7 - K1
  943. ELSE
  944. IF( RESULT( 1 ).GE.THRESH .AND. .NOT.PREFAC )
  945. $ THEN
  946. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  947. $ CALL ALADHD( NOUT, PATH )
  948. IF( PREFAC ) THEN
  949. WRITE( NOUT, FMT = 9995 )'DGBSVXX', FACT,
  950. $ TRANS, N, KL, KU, EQUED, IMAT, 1,
  951. $ RESULT( 1 )
  952. ELSE
  953. WRITE( NOUT, FMT = 9996 )'DGBSVXX', FACT,
  954. $ TRANS, N, KL, KU, IMAT, 1,
  955. $ RESULT( 1 )
  956. END IF
  957. NFAIL = NFAIL + 1
  958. NRUN = NRUN + 1
  959. END IF
  960. IF( RESULT( 6 ).GE.THRESH ) THEN
  961. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  962. $ CALL ALADHD( NOUT, PATH )
  963. IF( PREFAC ) THEN
  964. WRITE( NOUT, FMT = 9995 )'DGBSVXX', FACT,
  965. $ TRANS, N, KL, KU, EQUED, IMAT, 6,
  966. $ RESULT( 6 )
  967. ELSE
  968. WRITE( NOUT, FMT = 9996 )'DGBSVXX', FACT,
  969. $ TRANS, N, KL, KU, IMAT, 6,
  970. $ RESULT( 6 )
  971. END IF
  972. NFAIL = NFAIL + 1
  973. NRUN = NRUN + 1
  974. END IF
  975. IF( RESULT( 7 ).GE.THRESH ) THEN
  976. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  977. $ CALL ALADHD( NOUT, PATH )
  978. IF( PREFAC ) THEN
  979. WRITE( NOUT, FMT = 9995 )'DGBSVXX', FACT,
  980. $ TRANS, N, KL, KU, EQUED, IMAT, 7,
  981. $ RESULT( 7 )
  982. ELSE
  983. WRITE( NOUT, FMT = 9996 )'DGBSVXX', FACT,
  984. $ TRANS, N, KL, KU, IMAT, 7,
  985. $ RESULT( 7 )
  986. END IF
  987. NFAIL = NFAIL + 1
  988. NRUN = NRUN + 1
  989. END IF
  990. *
  991. END IF
  992. 90 CONTINUE
  993. 100 CONTINUE
  994. 110 CONTINUE
  995. 120 CONTINUE
  996. 130 CONTINUE
  997. 140 CONTINUE
  998. 150 CONTINUE
  999. *
  1000. * Print a summary of the results.
  1001. *
  1002. CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
  1003. * Test Error Bounds from DGBSVXX
  1004. CALL DEBCHVXX(THRESH, PATH)
  1005. 9999 FORMAT( ' *** In DDRVGB, LA=', I5, ' is too small for N=', I5,
  1006. $ ', KU=', I5, ', KL=', I5, / ' ==> Increase LA to at least ',
  1007. $ I5 )
  1008. 9998 FORMAT( ' *** In DDRVGB, LAFB=', I5, ' is too small for N=', I5,
  1009. $ ', KU=', I5, ', KL=', I5, /
  1010. $ ' ==> Increase LAFB to at least ', I5 )
  1011. 9997 FORMAT( 1X, A, ', N=', I5, ', KL=', I5, ', KU=', I5, ', type ',
  1012. $ I1, ', test(', I1, ')=', G12.5 )
  1013. 9996 FORMAT( 1X, A, '( ''', A1, ''',''', A1, ''',', I5, ',', I5, ',',
  1014. $ I5, ',...), type ', I1, ', test(', I1, ')=', G12.5 )
  1015. 9995 FORMAT( 1X, A, '( ''', A1, ''',''', A1, ''',', I5, ',', I5, ',',
  1016. $ I5, ',...), EQUED=''', A1, ''', type ', I1, ', test(', I1,
  1017. $ ')=', G12.5 )
  1018. *
  1019. RETURN
  1020. *
  1021. * End of DDRVGB
  1022. *
  1023. END