You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhpgvd.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384
  1. *> \brief \b ZHPGVD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHPGVD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpgvd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpgvd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpgvd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
  22. * LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBZ, UPLO
  26. * INTEGER INFO, ITYPE, LDZ, LIWORK, LRWORK, LWORK, N
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * )
  30. * DOUBLE PRECISION RWORK( * ), W( * )
  31. * COMPLEX*16 AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> ZHPGVD computes all the eigenvalues and, optionally, the eigenvectors
  41. *> of a complex generalized Hermitian-definite eigenproblem, of the form
  42. *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
  43. *> B are assumed to be Hermitian, stored in packed format, and B is also
  44. *> positive definite.
  45. *> If eigenvectors are desired, it uses a divide and conquer algorithm.
  46. *>
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] ITYPE
  53. *> \verbatim
  54. *> ITYPE is INTEGER
  55. *> Specifies the problem type to be solved:
  56. *> = 1: A*x = (lambda)*B*x
  57. *> = 2: A*B*x = (lambda)*x
  58. *> = 3: B*A*x = (lambda)*x
  59. *> \endverbatim
  60. *>
  61. *> \param[in] JOBZ
  62. *> \verbatim
  63. *> JOBZ is CHARACTER*1
  64. *> = 'N': Compute eigenvalues only;
  65. *> = 'V': Compute eigenvalues and eigenvectors.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] UPLO
  69. *> \verbatim
  70. *> UPLO is CHARACTER*1
  71. *> = 'U': Upper triangles of A and B are stored;
  72. *> = 'L': Lower triangles of A and B are stored.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] N
  76. *> \verbatim
  77. *> N is INTEGER
  78. *> The order of the matrices A and B. N >= 0.
  79. *> \endverbatim
  80. *>
  81. *> \param[in,out] AP
  82. *> \verbatim
  83. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  84. *> On entry, the upper or lower triangle of the Hermitian matrix
  85. *> A, packed columnwise in a linear array. The j-th column of A
  86. *> is stored in the array AP as follows:
  87. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  88. *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
  89. *>
  90. *> On exit, the contents of AP are destroyed.
  91. *> \endverbatim
  92. *>
  93. *> \param[in,out] BP
  94. *> \verbatim
  95. *> BP is COMPLEX*16 array, dimension (N*(N+1)/2)
  96. *> On entry, the upper or lower triangle of the Hermitian matrix
  97. *> B, packed columnwise in a linear array. The j-th column of B
  98. *> is stored in the array BP as follows:
  99. *> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
  100. *> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
  101. *>
  102. *> On exit, the triangular factor U or L from the Cholesky
  103. *> factorization B = U**H*U or B = L*L**H, in the same storage
  104. *> format as B.
  105. *> \endverbatim
  106. *>
  107. *> \param[out] W
  108. *> \verbatim
  109. *> W is DOUBLE PRECISION array, dimension (N)
  110. *> If INFO = 0, the eigenvalues in ascending order.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] Z
  114. *> \verbatim
  115. *> Z is COMPLEX*16 array, dimension (LDZ, N)
  116. *> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
  117. *> eigenvectors. The eigenvectors are normalized as follows:
  118. *> if ITYPE = 1 or 2, Z**H*B*Z = I;
  119. *> if ITYPE = 3, Z**H*inv(B)*Z = I.
  120. *> If JOBZ = 'N', then Z is not referenced.
  121. *> \endverbatim
  122. *>
  123. *> \param[in] LDZ
  124. *> \verbatim
  125. *> LDZ is INTEGER
  126. *> The leading dimension of the array Z. LDZ >= 1, and if
  127. *> JOBZ = 'V', LDZ >= max(1,N).
  128. *> \endverbatim
  129. *>
  130. *> \param[out] WORK
  131. *> \verbatim
  132. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  133. *> On exit, if INFO = 0, WORK(1) returns the required LWORK.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] LWORK
  137. *> \verbatim
  138. *> LWORK is INTEGER
  139. *> The dimension of the array WORK.
  140. *> If N <= 1, LWORK >= 1.
  141. *> If JOBZ = 'N' and N > 1, LWORK >= N.
  142. *> If JOBZ = 'V' and N > 1, LWORK >= 2*N.
  143. *>
  144. *> If LWORK = -1, then a workspace query is assumed; the routine
  145. *> only calculates the required sizes of the WORK, RWORK and
  146. *> IWORK arrays, returns these values as the first entries of
  147. *> the WORK, RWORK and IWORK arrays, and no error message
  148. *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  149. *> \endverbatim
  150. *>
  151. *> \param[out] RWORK
  152. *> \verbatim
  153. *> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  154. *> On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
  155. *> \endverbatim
  156. *>
  157. *> \param[in] LRWORK
  158. *> \verbatim
  159. *> LRWORK is INTEGER
  160. *> The dimension of array RWORK.
  161. *> If N <= 1, LRWORK >= 1.
  162. *> If JOBZ = 'N' and N > 1, LRWORK >= N.
  163. *> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
  164. *>
  165. *> If LRWORK = -1, then a workspace query is assumed; the
  166. *> routine only calculates the required sizes of the WORK, RWORK
  167. *> and IWORK arrays, returns these values as the first entries
  168. *> of the WORK, RWORK and IWORK arrays, and no error message
  169. *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  170. *> \endverbatim
  171. *>
  172. *> \param[out] IWORK
  173. *> \verbatim
  174. *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  175. *> On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
  176. *> \endverbatim
  177. *>
  178. *> \param[in] LIWORK
  179. *> \verbatim
  180. *> LIWORK is INTEGER
  181. *> The dimension of array IWORK.
  182. *> If JOBZ = 'N' or N <= 1, LIWORK >= 1.
  183. *> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
  184. *>
  185. *> If LIWORK = -1, then a workspace query is assumed; the
  186. *> routine only calculates the required sizes of the WORK, RWORK
  187. *> and IWORK arrays, returns these values as the first entries
  188. *> of the WORK, RWORK and IWORK arrays, and no error message
  189. *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  190. *> \endverbatim
  191. *>
  192. *> \param[out] INFO
  193. *> \verbatim
  194. *> INFO is INTEGER
  195. *> = 0: successful exit
  196. *> < 0: if INFO = -i, the i-th argument had an illegal value
  197. *> > 0: ZPPTRF or ZHPEVD returned an error code:
  198. *> <= N: if INFO = i, ZHPEVD failed to converge;
  199. *> i off-diagonal elements of an intermediate
  200. *> tridiagonal form did not convergeto zero;
  201. *> > N: if INFO = N + i, for 1 <= i <= n, then the leading
  202. *> principal minor of order i of B is not positive.
  203. *> The factorization of B could not be completed and
  204. *> no eigenvalues or eigenvectors were computed.
  205. *> \endverbatim
  206. *
  207. * Authors:
  208. * ========
  209. *
  210. *> \author Univ. of Tennessee
  211. *> \author Univ. of California Berkeley
  212. *> \author Univ. of Colorado Denver
  213. *> \author NAG Ltd.
  214. *
  215. *> \ingroup complex16OTHEReigen
  216. *
  217. *> \par Contributors:
  218. * ==================
  219. *>
  220. *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  221. *
  222. * =====================================================================
  223. SUBROUTINE ZHPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
  224. $ LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
  225. *
  226. * -- LAPACK driver routine --
  227. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  228. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  229. *
  230. * .. Scalar Arguments ..
  231. CHARACTER JOBZ, UPLO
  232. INTEGER INFO, ITYPE, LDZ, LIWORK, LRWORK, LWORK, N
  233. * ..
  234. * .. Array Arguments ..
  235. INTEGER IWORK( * )
  236. DOUBLE PRECISION RWORK( * ), W( * )
  237. COMPLEX*16 AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
  238. * ..
  239. *
  240. * =====================================================================
  241. *
  242. * .. Local Scalars ..
  243. LOGICAL LQUERY, UPPER, WANTZ
  244. CHARACTER TRANS
  245. INTEGER J, LIWMIN, LRWMIN, LWMIN, NEIG
  246. * ..
  247. * .. External Functions ..
  248. LOGICAL LSAME
  249. EXTERNAL LSAME
  250. * ..
  251. * .. External Subroutines ..
  252. EXTERNAL XERBLA, ZHPEVD, ZHPGST, ZPPTRF, ZTPMV, ZTPSV
  253. * ..
  254. * .. Intrinsic Functions ..
  255. INTRINSIC DBLE, MAX
  256. * ..
  257. * .. Executable Statements ..
  258. *
  259. * Test the input parameters.
  260. *
  261. WANTZ = LSAME( JOBZ, 'V' )
  262. UPPER = LSAME( UPLO, 'U' )
  263. LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  264. *
  265. INFO = 0
  266. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  267. INFO = -1
  268. ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  269. INFO = -2
  270. ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  271. INFO = -3
  272. ELSE IF( N.LT.0 ) THEN
  273. INFO = -4
  274. ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  275. INFO = -9
  276. END IF
  277. *
  278. IF( INFO.EQ.0 ) THEN
  279. IF( N.LE.1 ) THEN
  280. LWMIN = 1
  281. LIWMIN = 1
  282. LRWMIN = 1
  283. ELSE
  284. IF( WANTZ ) THEN
  285. LWMIN = 2*N
  286. LRWMIN = 1 + 5*N + 2*N**2
  287. LIWMIN = 3 + 5*N
  288. ELSE
  289. LWMIN = N
  290. LRWMIN = N
  291. LIWMIN = 1
  292. END IF
  293. END IF
  294. *
  295. WORK( 1 ) = LWMIN
  296. RWORK( 1 ) = LRWMIN
  297. IWORK( 1 ) = LIWMIN
  298. IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  299. INFO = -11
  300. ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
  301. INFO = -13
  302. ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  303. INFO = -15
  304. END IF
  305. END IF
  306. *
  307. IF( INFO.NE.0 ) THEN
  308. CALL XERBLA( 'ZHPGVD', -INFO )
  309. RETURN
  310. ELSE IF( LQUERY ) THEN
  311. RETURN
  312. END IF
  313. *
  314. * Quick return if possible
  315. *
  316. IF( N.EQ.0 )
  317. $ RETURN
  318. *
  319. * Form a Cholesky factorization of B.
  320. *
  321. CALL ZPPTRF( UPLO, N, BP, INFO )
  322. IF( INFO.NE.0 ) THEN
  323. INFO = N + INFO
  324. RETURN
  325. END IF
  326. *
  327. * Transform problem to standard eigenvalue problem and solve.
  328. *
  329. CALL ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
  330. CALL ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, RWORK,
  331. $ LRWORK, IWORK, LIWORK, INFO )
  332. LWMIN = INT( MAX( DBLE( LWMIN ), DBLE( WORK( 1 ) ) ) )
  333. LRWMIN = INT( MAX( DBLE( LRWMIN ), DBLE( RWORK( 1 ) ) ) )
  334. LIWMIN = INT( MAX( DBLE( LIWMIN ), DBLE( IWORK( 1 ) ) ) )
  335. *
  336. IF( WANTZ ) THEN
  337. *
  338. * Backtransform eigenvectors to the original problem.
  339. *
  340. NEIG = N
  341. IF( INFO.GT.0 )
  342. $ NEIG = INFO - 1
  343. IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  344. *
  345. * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  346. * backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
  347. *
  348. IF( UPPER ) THEN
  349. TRANS = 'N'
  350. ELSE
  351. TRANS = 'C'
  352. END IF
  353. *
  354. DO 10 J = 1, NEIG
  355. CALL ZTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  356. $ 1 )
  357. 10 CONTINUE
  358. *
  359. ELSE IF( ITYPE.EQ.3 ) THEN
  360. *
  361. * For B*A*x=(lambda)*x;
  362. * backtransform eigenvectors: x = L*y or U**H *y
  363. *
  364. IF( UPPER ) THEN
  365. TRANS = 'C'
  366. ELSE
  367. TRANS = 'N'
  368. END IF
  369. *
  370. DO 20 J = 1, NEIG
  371. CALL ZTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  372. $ 1 )
  373. 20 CONTINUE
  374. END IF
  375. END IF
  376. *
  377. WORK( 1 ) = LWMIN
  378. RWORK( 1 ) = LRWMIN
  379. IWORK( 1 ) = LIWMIN
  380. RETURN
  381. *
  382. * End of ZHPGVD
  383. *
  384. END