You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sorm22.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439
  1. *> \brief \b SORM22 multiplies a general matrix by a banded orthogonal matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SORM22 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorm22.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorm22.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorm22.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SORM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
  22. * $ WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER SIDE, TRANS
  26. * INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL Q( LDQ, * ), C( LDC, * ), WORK( * )
  30. * ..
  31. *
  32. *> \par Purpose
  33. * ============
  34. *>
  35. *> \verbatim
  36. *>
  37. *>
  38. *> SORM22 overwrites the general real M-by-N matrix C with
  39. *>
  40. *> SIDE = 'L' SIDE = 'R'
  41. *> TRANS = 'N': Q * C C * Q
  42. *> TRANS = 'T': Q**T * C C * Q**T
  43. *>
  44. *> where Q is a real orthogonal matrix of order NQ, with NQ = M if
  45. *> SIDE = 'L' and NQ = N if SIDE = 'R'.
  46. *> The orthogonal matrix Q processes a 2-by-2 block structure
  47. *>
  48. *> [ Q11 Q12 ]
  49. *> Q = [ ]
  50. *> [ Q21 Q22 ],
  51. *>
  52. *> where Q12 is an N1-by-N1 lower triangular matrix and Q21 is an
  53. *> N2-by-N2 upper triangular matrix.
  54. *> \endverbatim
  55. *
  56. * Arguments:
  57. * ==========
  58. *
  59. *> \param[in] SIDE
  60. *> \verbatim
  61. *> SIDE is CHARACTER*1
  62. *> = 'L': apply Q or Q**T from the Left;
  63. *> = 'R': apply Q or Q**T from the Right.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] TRANS
  67. *> \verbatim
  68. *> TRANS is CHARACTER*1
  69. *> = 'N': apply Q (No transpose);
  70. *> = 'C': apply Q**T (Conjugate transpose).
  71. *> \endverbatim
  72. *>
  73. *> \param[in] M
  74. *> \verbatim
  75. *> M is INTEGER
  76. *> The number of rows of the matrix C. M >= 0.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] N
  80. *> \verbatim
  81. *> N is INTEGER
  82. *> The number of columns of the matrix C. N >= 0.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] N1
  86. *> \param[in] N2
  87. *> \verbatim
  88. *> N1 is INTEGER
  89. *> N2 is INTEGER
  90. *> The dimension of Q12 and Q21, respectively. N1, N2 >= 0.
  91. *> The following requirement must be satisfied:
  92. *> N1 + N2 = M if SIDE = 'L' and N1 + N2 = N if SIDE = 'R'.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] Q
  96. *> \verbatim
  97. *> Q is REAL array, dimension
  98. *> (LDQ,M) if SIDE = 'L'
  99. *> (LDQ,N) if SIDE = 'R'
  100. *> \endverbatim
  101. *>
  102. *> \param[in] LDQ
  103. *> \verbatim
  104. *> LDQ is INTEGER
  105. *> The leading dimension of the array Q.
  106. *> LDQ >= max(1,M) if SIDE = 'L'; LDQ >= max(1,N) if SIDE = 'R'.
  107. *> \endverbatim
  108. *>
  109. *> \param[in,out] C
  110. *> \verbatim
  111. *> C is REAL array, dimension (LDC,N)
  112. *> On entry, the M-by-N matrix C.
  113. *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] LDC
  117. *> \verbatim
  118. *> LDC is INTEGER
  119. *> The leading dimension of the array C. LDC >= max(1,M).
  120. *> \endverbatim
  121. *>
  122. *> \param[out] WORK
  123. *> \verbatim
  124. *> WORK is REAL array, dimension (MAX(1,LWORK))
  125. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  126. *> \endverbatim
  127. *>
  128. *> \param[in] LWORK
  129. *> \verbatim
  130. *> LWORK is INTEGER
  131. *> The dimension of the array WORK.
  132. *> If SIDE = 'L', LWORK >= max(1,N);
  133. *> if SIDE = 'R', LWORK >= max(1,M).
  134. *> For optimum performance LWORK >= M*N.
  135. *>
  136. *> If LWORK = -1, then a workspace query is assumed; the routine
  137. *> only calculates the optimal size of the WORK array, returns
  138. *> this value as the first entry of the WORK array, and no error
  139. *> message related to LWORK is issued by XERBLA.
  140. *> \endverbatim
  141. *>
  142. *> \param[out] INFO
  143. *> \verbatim
  144. *> INFO is INTEGER
  145. *> = 0: successful exit
  146. *> < 0: if INFO = -i, the i-th argument had an illegal value
  147. *> \endverbatim
  148. *
  149. *
  150. * Authors:
  151. * ========
  152. *
  153. *> \author Univ. of Tennessee
  154. *> \author Univ. of California Berkeley
  155. *> \author Univ. of Colorado Denver
  156. *> \author NAG Ltd.
  157. *
  158. *> \ingroup unm22
  159. *
  160. * =====================================================================
  161. SUBROUTINE SORM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
  162. $ WORK, LWORK, INFO )
  163. *
  164. * -- LAPACK computational routine --
  165. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  166. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  167. *
  168. IMPLICIT NONE
  169. *
  170. * .. Scalar Arguments ..
  171. CHARACTER SIDE, TRANS
  172. INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO
  173. * ..
  174. * .. Array Arguments ..
  175. REAL Q( LDQ, * ), C( LDC, * ), WORK( * )
  176. * ..
  177. *
  178. * =====================================================================
  179. *
  180. * .. Parameters ..
  181. REAL ONE
  182. PARAMETER ( ONE = 1.0E+0 )
  183. *
  184. * .. Local Scalars ..
  185. LOGICAL LEFT, LQUERY, NOTRAN
  186. INTEGER I, LDWORK, LEN, LWKOPT, NB, NQ, NW
  187. * ..
  188. * .. External Functions ..
  189. LOGICAL LSAME
  190. REAL SROUNDUP_LWORK
  191. EXTERNAL LSAME, SROUNDUP_LWORK
  192. * ..
  193. * .. External Subroutines ..
  194. EXTERNAL SGEMM, SLACPY, STRMM, XERBLA
  195. * ..
  196. * .. Intrinsic Functions ..
  197. INTRINSIC MAX, MIN
  198. * ..
  199. * .. Executable Statements ..
  200. *
  201. * Test the input arguments
  202. *
  203. INFO = 0
  204. LEFT = LSAME( SIDE, 'L' )
  205. NOTRAN = LSAME( TRANS, 'N' )
  206. LQUERY = ( LWORK.EQ.-1 )
  207. *
  208. * NQ is the order of Q;
  209. * NW is the minimum dimension of WORK.
  210. *
  211. IF( LEFT ) THEN
  212. NQ = M
  213. ELSE
  214. NQ = N
  215. END IF
  216. NW = NQ
  217. IF( N1.EQ.0 .OR. N2.EQ.0 ) NW = 1
  218. IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  219. INFO = -1
  220. ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
  221. $ THEN
  222. INFO = -2
  223. ELSE IF( M.LT.0 ) THEN
  224. INFO = -3
  225. ELSE IF( N.LT.0 ) THEN
  226. INFO = -4
  227. ELSE IF( N1.LT.0 .OR. N1+N2.NE.NQ ) THEN
  228. INFO = -5
  229. ELSE IF( N2.LT.0 ) THEN
  230. INFO = -6
  231. ELSE IF( LDQ.LT.MAX( 1, NQ ) ) THEN
  232. INFO = -8
  233. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  234. INFO = -10
  235. ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
  236. INFO = -12
  237. END IF
  238. *
  239. IF( INFO.EQ.0 ) THEN
  240. LWKOPT = M*N
  241. WORK( 1 ) = SROUNDUP_LWORK( LWKOPT )
  242. END IF
  243. *
  244. IF( INFO.NE.0 ) THEN
  245. CALL XERBLA( 'SORM22', -INFO )
  246. RETURN
  247. ELSE IF( LQUERY ) THEN
  248. RETURN
  249. END IF
  250. *
  251. * Quick return if possible
  252. *
  253. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  254. WORK( 1 ) = 1
  255. RETURN
  256. END IF
  257. *
  258. * Degenerate cases (N1 = 0 or N2 = 0) are handled using STRMM.
  259. *
  260. IF( N1.EQ.0 ) THEN
  261. CALL STRMM( SIDE, 'Upper', TRANS, 'Non-Unit', M, N, ONE,
  262. $ Q, LDQ, C, LDC )
  263. WORK( 1 ) = ONE
  264. RETURN
  265. ELSE IF( N2.EQ.0 ) THEN
  266. CALL STRMM( SIDE, 'Lower', TRANS, 'Non-Unit', M, N, ONE,
  267. $ Q, LDQ, C, LDC )
  268. WORK( 1 ) = ONE
  269. RETURN
  270. END IF
  271. *
  272. * Compute the largest chunk size available from the workspace.
  273. *
  274. NB = MAX( 1, MIN( LWORK, LWKOPT ) / NQ )
  275. *
  276. IF( LEFT ) THEN
  277. IF( NOTRAN ) THEN
  278. DO I = 1, N, NB
  279. LEN = MIN( NB, N-I+1 )
  280. LDWORK = M
  281. *
  282. * Multiply bottom part of C by Q12.
  283. *
  284. CALL SLACPY( 'All', N1, LEN, C( N2+1, I ), LDC, WORK,
  285. $ LDWORK )
  286. CALL STRMM( 'Left', 'Lower', 'No Transpose', 'Non-Unit',
  287. $ N1, LEN, ONE, Q( 1, N2+1 ), LDQ, WORK,
  288. $ LDWORK )
  289. *
  290. * Multiply top part of C by Q11.
  291. *
  292. CALL SGEMM( 'No Transpose', 'No Transpose', N1, LEN, N2,
  293. $ ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
  294. $ LDWORK )
  295. *
  296. * Multiply top part of C by Q21.
  297. *
  298. CALL SLACPY( 'All', N2, LEN, C( 1, I ), LDC,
  299. $ WORK( N1+1 ), LDWORK )
  300. CALL STRMM( 'Left', 'Upper', 'No Transpose', 'Non-Unit',
  301. $ N2, LEN, ONE, Q( N1+1, 1 ), LDQ,
  302. $ WORK( N1+1 ), LDWORK )
  303. *
  304. * Multiply bottom part of C by Q22.
  305. *
  306. CALL SGEMM( 'No Transpose', 'No Transpose', N2, LEN, N1,
  307. $ ONE, Q( N1+1, N2+1 ), LDQ, C( N2+1, I ), LDC,
  308. $ ONE, WORK( N1+1 ), LDWORK )
  309. *
  310. * Copy everything back.
  311. *
  312. CALL SLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
  313. $ LDC )
  314. END DO
  315. ELSE
  316. DO I = 1, N, NB
  317. LEN = MIN( NB, N-I+1 )
  318. LDWORK = M
  319. *
  320. * Multiply bottom part of C by Q21**T.
  321. *
  322. CALL SLACPY( 'All', N2, LEN, C( N1+1, I ), LDC, WORK,
  323. $ LDWORK )
  324. CALL STRMM( 'Left', 'Upper', 'Transpose', 'Non-Unit',
  325. $ N2, LEN, ONE, Q( N1+1, 1 ), LDQ, WORK,
  326. $ LDWORK )
  327. *
  328. * Multiply top part of C by Q11**T.
  329. *
  330. CALL SGEMM( 'Transpose', 'No Transpose', N2, LEN, N1,
  331. $ ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
  332. $ LDWORK )
  333. *
  334. * Multiply top part of C by Q12**T.
  335. *
  336. CALL SLACPY( 'All', N1, LEN, C( 1, I ), LDC,
  337. $ WORK( N2+1 ), LDWORK )
  338. CALL STRMM( 'Left', 'Lower', 'Transpose', 'Non-Unit',
  339. $ N1, LEN, ONE, Q( 1, N2+1 ), LDQ,
  340. $ WORK( N2+1 ), LDWORK )
  341. *
  342. * Multiply bottom part of C by Q22**T.
  343. *
  344. CALL SGEMM( 'Transpose', 'No Transpose', N1, LEN, N2,
  345. $ ONE, Q( N1+1, N2+1 ), LDQ, C( N1+1, I ), LDC,
  346. $ ONE, WORK( N2+1 ), LDWORK )
  347. *
  348. * Copy everything back.
  349. *
  350. CALL SLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
  351. $ LDC )
  352. END DO
  353. END IF
  354. ELSE
  355. IF( NOTRAN ) THEN
  356. DO I = 1, M, NB
  357. LEN = MIN( NB, M-I+1 )
  358. LDWORK = LEN
  359. *
  360. * Multiply right part of C by Q21.
  361. *
  362. CALL SLACPY( 'All', LEN, N2, C( I, N1+1 ), LDC, WORK,
  363. $ LDWORK )
  364. CALL STRMM( 'Right', 'Upper', 'No Transpose', 'Non-Unit',
  365. $ LEN, N2, ONE, Q( N1+1, 1 ), LDQ, WORK,
  366. $ LDWORK )
  367. *
  368. * Multiply left part of C by Q11.
  369. *
  370. CALL SGEMM( 'No Transpose', 'No Transpose', LEN, N2, N1,
  371. $ ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
  372. $ LDWORK )
  373. *
  374. * Multiply left part of C by Q12.
  375. *
  376. CALL SLACPY( 'All', LEN, N1, C( I, 1 ), LDC,
  377. $ WORK( 1 + N2*LDWORK ), LDWORK )
  378. CALL STRMM( 'Right', 'Lower', 'No Transpose', 'Non-Unit',
  379. $ LEN, N1, ONE, Q( 1, N2+1 ), LDQ,
  380. $ WORK( 1 + N2*LDWORK ), LDWORK )
  381. *
  382. * Multiply right part of C by Q22.
  383. *
  384. CALL SGEMM( 'No Transpose', 'No Transpose', LEN, N1, N2,
  385. $ ONE, C( I, N1+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
  386. $ ONE, WORK( 1 + N2*LDWORK ), LDWORK )
  387. *
  388. * Copy everything back.
  389. *
  390. CALL SLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
  391. $ LDC )
  392. END DO
  393. ELSE
  394. DO I = 1, M, NB
  395. LEN = MIN( NB, M-I+1 )
  396. LDWORK = LEN
  397. *
  398. * Multiply right part of C by Q12**T.
  399. *
  400. CALL SLACPY( 'All', LEN, N1, C( I, N2+1 ), LDC, WORK,
  401. $ LDWORK )
  402. CALL STRMM( 'Right', 'Lower', 'Transpose', 'Non-Unit',
  403. $ LEN, N1, ONE, Q( 1, N2+1 ), LDQ, WORK,
  404. $ LDWORK )
  405. *
  406. * Multiply left part of C by Q11**T.
  407. *
  408. CALL SGEMM( 'No Transpose', 'Transpose', LEN, N1, N2,
  409. $ ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
  410. $ LDWORK )
  411. *
  412. * Multiply left part of C by Q21**T.
  413. *
  414. CALL SLACPY( 'All', LEN, N2, C( I, 1 ), LDC,
  415. $ WORK( 1 + N1*LDWORK ), LDWORK )
  416. CALL STRMM( 'Right', 'Upper', 'Transpose', 'Non-Unit',
  417. $ LEN, N2, ONE, Q( N1+1, 1 ), LDQ,
  418. $ WORK( 1 + N1*LDWORK ), LDWORK )
  419. *
  420. * Multiply right part of C by Q22**T.
  421. *
  422. CALL SGEMM( 'No Transpose', 'Transpose', LEN, N2, N1,
  423. $ ONE, C( I, N2+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
  424. $ ONE, WORK( 1 + N1*LDWORK ), LDWORK )
  425. *
  426. * Copy everything back.
  427. *
  428. CALL SLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
  429. $ LDC )
  430. END DO
  431. END IF
  432. END IF
  433. *
  434. WORK( 1 ) = SROUNDUP_LWORK( LWKOPT )
  435. RETURN
  436. *
  437. * End of SORM22
  438. *
  439. END