You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dchksb.f 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726
  1. *> \brief \b DCHKSB
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DCHKSB( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE, ISEED,
  12. * THRESH, NOUNIT, A, LDA, SD, SE, U, LDU, WORK,
  13. * LWORK, RESULT, INFO )
  14. *
  15. * .. Scalar Arguments ..
  16. * INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
  17. * $ NWDTHS
  18. * DOUBLE PRECISION THRESH
  19. * ..
  20. * .. Array Arguments ..
  21. * LOGICAL DOTYPE( * )
  22. * INTEGER ISEED( 4 ), KK( * ), NN( * )
  23. * DOUBLE PRECISION A( LDA, * ), RESULT( * ), SD( * ), SE( * ),
  24. * $ U( LDU, * ), WORK( * )
  25. * ..
  26. *
  27. *
  28. *> \par Purpose:
  29. * =============
  30. *>
  31. *> \verbatim
  32. *>
  33. *> DCHKSB tests the reduction of a symmetric band matrix to tridiagonal
  34. *> form, used with the symmetric eigenvalue problem.
  35. *>
  36. *> DSBTRD factors a symmetric band matrix A as U S U' , where ' means
  37. *> transpose, S is symmetric tridiagonal, and U is orthogonal.
  38. *> DSBTRD can use either just the lower or just the upper triangle
  39. *> of A; DCHKSB checks both cases.
  40. *>
  41. *> When DCHKSB is called, a number of matrix "sizes" ("n's"), a number
  42. *> of bandwidths ("k's"), and a number of matrix "types" are
  43. *> specified. For each size ("n"), each bandwidth ("k") less than or
  44. *> equal to "n", and each type of matrix, one matrix will be generated
  45. *> and used to test the symmetric banded reduction routine. For each
  46. *> matrix, a number of tests will be performed:
  47. *>
  48. *> (1) | A - V S V' | / ( |A| n ulp ) computed by DSBTRD with
  49. *> UPLO='U'
  50. *>
  51. *> (2) | I - UU' | / ( n ulp )
  52. *>
  53. *> (3) | A - V S V' | / ( |A| n ulp ) computed by DSBTRD with
  54. *> UPLO='L'
  55. *>
  56. *> (4) | I - UU' | / ( n ulp )
  57. *>
  58. *> The "sizes" are specified by an array NN(1:NSIZES); the value of
  59. *> each element NN(j) specifies one size.
  60. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
  61. *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
  62. *> Currently, the list of possible types is:
  63. *>
  64. *> (1) The zero matrix.
  65. *> (2) The identity matrix.
  66. *>
  67. *> (3) A diagonal matrix with evenly spaced entries
  68. *> 1, ..., ULP and random signs.
  69. *> (ULP = (first number larger than 1) - 1 )
  70. *> (4) A diagonal matrix with geometrically spaced entries
  71. *> 1, ..., ULP and random signs.
  72. *> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
  73. *> and random signs.
  74. *>
  75. *> (6) Same as (4), but multiplied by SQRT( overflow threshold )
  76. *> (7) Same as (4), but multiplied by SQRT( underflow threshold )
  77. *>
  78. *> (8) A matrix of the form U' D U, where U is orthogonal and
  79. *> D has evenly spaced entries 1, ..., ULP with random signs
  80. *> on the diagonal.
  81. *>
  82. *> (9) A matrix of the form U' D U, where U is orthogonal and
  83. *> D has geometrically spaced entries 1, ..., ULP with random
  84. *> signs on the diagonal.
  85. *>
  86. *> (10) A matrix of the form U' D U, where U is orthogonal and
  87. *> D has "clustered" entries 1, ULP,..., ULP with random
  88. *> signs on the diagonal.
  89. *>
  90. *> (11) Same as (8), but multiplied by SQRT( overflow threshold )
  91. *> (12) Same as (8), but multiplied by SQRT( underflow threshold )
  92. *>
  93. *> (13) Symmetric matrix with random entries chosen from (-1,1).
  94. *> (14) Same as (13), but multiplied by SQRT( overflow threshold )
  95. *> (15) Same as (13), but multiplied by SQRT( underflow threshold )
  96. *> \endverbatim
  97. *
  98. * Arguments:
  99. * ==========
  100. *
  101. *> \param[in] NSIZES
  102. *> \verbatim
  103. *> NSIZES is INTEGER
  104. *> The number of sizes of matrices to use. If it is zero,
  105. *> DCHKSB does nothing. It must be at least zero.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] NN
  109. *> \verbatim
  110. *> NN is INTEGER array, dimension (NSIZES)
  111. *> An array containing the sizes to be used for the matrices.
  112. *> Zero values will be skipped. The values must be at least
  113. *> zero.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] NWDTHS
  117. *> \verbatim
  118. *> NWDTHS is INTEGER
  119. *> The number of bandwidths to use. If it is zero,
  120. *> DCHKSB does nothing. It must be at least zero.
  121. *> \endverbatim
  122. *>
  123. *> \param[in] KK
  124. *> \verbatim
  125. *> KK is INTEGER array, dimension (NWDTHS)
  126. *> An array containing the bandwidths to be used for the band
  127. *> matrices. The values must be at least zero.
  128. *> \endverbatim
  129. *>
  130. *> \param[in] NTYPES
  131. *> \verbatim
  132. *> NTYPES is INTEGER
  133. *> The number of elements in DOTYPE. If it is zero, DCHKSB
  134. *> does nothing. It must be at least zero. If it is MAXTYP+1
  135. *> and NSIZES is 1, then an additional type, MAXTYP+1 is
  136. *> defined, which is to use whatever matrix is in A. This
  137. *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
  138. *> DOTYPE(MAXTYP+1) is .TRUE. .
  139. *> \endverbatim
  140. *>
  141. *> \param[in] DOTYPE
  142. *> \verbatim
  143. *> DOTYPE is LOGICAL array, dimension (NTYPES)
  144. *> If DOTYPE(j) is .TRUE., then for each size in NN a
  145. *> matrix of that size and of type j will be generated.
  146. *> If NTYPES is smaller than the maximum number of types
  147. *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
  148. *> MAXTYP will not be generated. If NTYPES is larger
  149. *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
  150. *> will be ignored.
  151. *> \endverbatim
  152. *>
  153. *> \param[in,out] ISEED
  154. *> \verbatim
  155. *> ISEED is INTEGER array, dimension (4)
  156. *> On entry ISEED specifies the seed of the random number
  157. *> generator. The array elements should be between 0 and 4095;
  158. *> if not they will be reduced mod 4096. Also, ISEED(4) must
  159. *> be odd. The random number generator uses a linear
  160. *> congruential sequence limited to small integers, and so
  161. *> should produce machine independent random numbers. The
  162. *> values of ISEED are changed on exit, and can be used in the
  163. *> next call to DCHKSB to continue the same random number
  164. *> sequence.
  165. *> \endverbatim
  166. *>
  167. *> \param[in] THRESH
  168. *> \verbatim
  169. *> THRESH is DOUBLE PRECISION
  170. *> A test will count as "failed" if the "error", computed as
  171. *> described above, exceeds THRESH. Note that the error
  172. *> is scaled to be O(1), so THRESH should be a reasonably
  173. *> small multiple of 1, e.g., 10 or 100. In particular,
  174. *> it should not depend on the precision (single vs. double)
  175. *> or the size of the matrix. It must be at least zero.
  176. *> \endverbatim
  177. *>
  178. *> \param[in] NOUNIT
  179. *> \verbatim
  180. *> NOUNIT is INTEGER
  181. *> The FORTRAN unit number for printing out error messages
  182. *> (e.g., if a routine returns IINFO not equal to 0.)
  183. *> \endverbatim
  184. *>
  185. *> \param[in,out] A
  186. *> \verbatim
  187. *> A is DOUBLE PRECISION array, dimension
  188. *> (LDA, max(NN))
  189. *> Used to hold the matrix whose eigenvalues are to be
  190. *> computed.
  191. *> \endverbatim
  192. *>
  193. *> \param[in] LDA
  194. *> \verbatim
  195. *> LDA is INTEGER
  196. *> The leading dimension of A. It must be at least 2 (not 1!)
  197. *> and at least max( KK )+1.
  198. *> \endverbatim
  199. *>
  200. *> \param[out] SD
  201. *> \verbatim
  202. *> SD is DOUBLE PRECISION array, dimension (max(NN))
  203. *> Used to hold the diagonal of the tridiagonal matrix computed
  204. *> by DSBTRD.
  205. *> \endverbatim
  206. *>
  207. *> \param[out] SE
  208. *> \verbatim
  209. *> SE is DOUBLE PRECISION array, dimension (max(NN))
  210. *> Used to hold the off-diagonal of the tridiagonal matrix
  211. *> computed by DSBTRD.
  212. *> \endverbatim
  213. *>
  214. *> \param[out] U
  215. *> \verbatim
  216. *> U is DOUBLE PRECISION array, dimension (LDU, max(NN))
  217. *> Used to hold the orthogonal matrix computed by DSBTRD.
  218. *> \endverbatim
  219. *>
  220. *> \param[in] LDU
  221. *> \verbatim
  222. *> LDU is INTEGER
  223. *> The leading dimension of U. It must be at least 1
  224. *> and at least max( NN ).
  225. *> \endverbatim
  226. *>
  227. *> \param[out] WORK
  228. *> \verbatim
  229. *> WORK is DOUBLE PRECISION array, dimension (LWORK)
  230. *> \endverbatim
  231. *>
  232. *> \param[in] LWORK
  233. *> \verbatim
  234. *> LWORK is INTEGER
  235. *> The number of entries in WORK. This must be at least
  236. *> max( LDA+1, max(NN)+1 )*max(NN).
  237. *> \endverbatim
  238. *>
  239. *> \param[out] RESULT
  240. *> \verbatim
  241. *> RESULT is DOUBLE PRECISION array, dimension (4)
  242. *> The values computed by the tests described above.
  243. *> The values are currently limited to 1/ulp, to avoid
  244. *> overflow.
  245. *> \endverbatim
  246. *>
  247. *> \param[out] INFO
  248. *> \verbatim
  249. *> INFO is INTEGER
  250. *> If 0, then everything ran OK.
  251. *>
  252. *>-----------------------------------------------------------------------
  253. *>
  254. *> Some Local Variables and Parameters:
  255. *> ---- ----- --------- --- ----------
  256. *> ZERO, ONE Real 0 and 1.
  257. *> MAXTYP The number of types defined.
  258. *> NTEST The number of tests performed, or which can
  259. *> be performed so far, for the current matrix.
  260. *> NTESTT The total number of tests performed so far.
  261. *> NMAX Largest value in NN.
  262. *> NMATS The number of matrices generated so far.
  263. *> NERRS The number of tests which have exceeded THRESH
  264. *> so far.
  265. *> COND, IMODE Values to be passed to the matrix generators.
  266. *> ANORM Norm of A; passed to matrix generators.
  267. *>
  268. *> OVFL, UNFL Overflow and underflow thresholds.
  269. *> ULP, ULPINV Finest relative precision and its inverse.
  270. *> RTOVFL, RTUNFL Square roots of the previous 2 values.
  271. *> The following four arrays decode JTYPE:
  272. *> KTYPE(j) The general type (1-10) for type "j".
  273. *> KMODE(j) The MODE value to be passed to the matrix
  274. *> generator for type "j".
  275. *> KMAGN(j) The order of magnitude ( O(1),
  276. *> O(overflow^(1/2) ), O(underflow^(1/2) )
  277. *> \endverbatim
  278. *
  279. * Authors:
  280. * ========
  281. *
  282. *> \author Univ. of Tennessee
  283. *> \author Univ. of California Berkeley
  284. *> \author Univ. of Colorado Denver
  285. *> \author NAG Ltd.
  286. *
  287. *> \date November 2011
  288. *
  289. *> \ingroup double_eig
  290. *
  291. * =====================================================================
  292. SUBROUTINE DCHKSB( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE, ISEED,
  293. $ THRESH, NOUNIT, A, LDA, SD, SE, U, LDU, WORK,
  294. $ LWORK, RESULT, INFO )
  295. *
  296. * -- LAPACK test routine (version 3.4.0) --
  297. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  298. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  299. * November 2011
  300. *
  301. * .. Scalar Arguments ..
  302. INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
  303. $ NWDTHS
  304. DOUBLE PRECISION THRESH
  305. * ..
  306. * .. Array Arguments ..
  307. LOGICAL DOTYPE( * )
  308. INTEGER ISEED( 4 ), KK( * ), NN( * )
  309. DOUBLE PRECISION A( LDA, * ), RESULT( * ), SD( * ), SE( * ),
  310. $ U( LDU, * ), WORK( * )
  311. * ..
  312. *
  313. * =====================================================================
  314. *
  315. * .. Parameters ..
  316. DOUBLE PRECISION ZERO, ONE, TWO, TEN
  317. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
  318. $ TEN = 10.0D0 )
  319. DOUBLE PRECISION HALF
  320. PARAMETER ( HALF = ONE / TWO )
  321. INTEGER MAXTYP
  322. PARAMETER ( MAXTYP = 15 )
  323. * ..
  324. * .. Local Scalars ..
  325. LOGICAL BADNN, BADNNB
  326. INTEGER I, IINFO, IMODE, ITYPE, J, JC, JCOL, JR, JSIZE,
  327. $ JTYPE, JWIDTH, K, KMAX, MTYPES, N, NERRS,
  328. $ NMATS, NMAX, NTEST, NTESTT
  329. DOUBLE PRECISION ANINV, ANORM, COND, OVFL, RTOVFL, RTUNFL,
  330. $ TEMP1, ULP, ULPINV, UNFL
  331. * ..
  332. * .. Local Arrays ..
  333. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
  334. $ KMODE( MAXTYP ), KTYPE( MAXTYP )
  335. * ..
  336. * .. External Functions ..
  337. DOUBLE PRECISION DLAMCH
  338. EXTERNAL DLAMCH
  339. * ..
  340. * .. External Subroutines ..
  341. EXTERNAL DLACPY, DLASET, DLASUM, DLATMR, DLATMS, DSBT21,
  342. $ DSBTRD, XERBLA
  343. * ..
  344. * .. Intrinsic Functions ..
  345. INTRINSIC ABS, DBLE, MAX, MIN, SQRT
  346. * ..
  347. * .. Data statements ..
  348. DATA KTYPE / 1, 2, 5*4, 5*5, 3*8 /
  349. DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
  350. $ 2, 3 /
  351. DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
  352. $ 0, 0 /
  353. * ..
  354. * .. Executable Statements ..
  355. *
  356. * Check for errors
  357. *
  358. NTESTT = 0
  359. INFO = 0
  360. *
  361. * Important constants
  362. *
  363. BADNN = .FALSE.
  364. NMAX = 1
  365. DO 10 J = 1, NSIZES
  366. NMAX = MAX( NMAX, NN( J ) )
  367. IF( NN( J ).LT.0 )
  368. $ BADNN = .TRUE.
  369. 10 CONTINUE
  370. *
  371. BADNNB = .FALSE.
  372. KMAX = 0
  373. DO 20 J = 1, NSIZES
  374. KMAX = MAX( KMAX, KK( J ) )
  375. IF( KK( J ).LT.0 )
  376. $ BADNNB = .TRUE.
  377. 20 CONTINUE
  378. KMAX = MIN( NMAX-1, KMAX )
  379. *
  380. * Check for errors
  381. *
  382. IF( NSIZES.LT.0 ) THEN
  383. INFO = -1
  384. ELSE IF( BADNN ) THEN
  385. INFO = -2
  386. ELSE IF( NWDTHS.LT.0 ) THEN
  387. INFO = -3
  388. ELSE IF( BADNNB ) THEN
  389. INFO = -4
  390. ELSE IF( NTYPES.LT.0 ) THEN
  391. INFO = -5
  392. ELSE IF( LDA.LT.KMAX+1 ) THEN
  393. INFO = -11
  394. ELSE IF( LDU.LT.NMAX ) THEN
  395. INFO = -15
  396. ELSE IF( ( MAX( LDA, NMAX )+1 )*NMAX.GT.LWORK ) THEN
  397. INFO = -17
  398. END IF
  399. *
  400. IF( INFO.NE.0 ) THEN
  401. CALL XERBLA( 'DCHKSB', -INFO )
  402. RETURN
  403. END IF
  404. *
  405. * Quick return if possible
  406. *
  407. IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 .OR. NWDTHS.EQ.0 )
  408. $ RETURN
  409. *
  410. * More Important constants
  411. *
  412. UNFL = DLAMCH( 'Safe minimum' )
  413. OVFL = ONE / UNFL
  414. ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
  415. ULPINV = ONE / ULP
  416. RTUNFL = SQRT( UNFL )
  417. RTOVFL = SQRT( OVFL )
  418. *
  419. * Loop over sizes, types
  420. *
  421. NERRS = 0
  422. NMATS = 0
  423. *
  424. DO 190 JSIZE = 1, NSIZES
  425. N = NN( JSIZE )
  426. ANINV = ONE / DBLE( MAX( 1, N ) )
  427. *
  428. DO 180 JWIDTH = 1, NWDTHS
  429. K = KK( JWIDTH )
  430. IF( K.GT.N )
  431. $ GO TO 180
  432. K = MAX( 0, MIN( N-1, K ) )
  433. *
  434. IF( NSIZES.NE.1 ) THEN
  435. MTYPES = MIN( MAXTYP, NTYPES )
  436. ELSE
  437. MTYPES = MIN( MAXTYP+1, NTYPES )
  438. END IF
  439. *
  440. DO 170 JTYPE = 1, MTYPES
  441. IF( .NOT.DOTYPE( JTYPE ) )
  442. $ GO TO 170
  443. NMATS = NMATS + 1
  444. NTEST = 0
  445. *
  446. DO 30 J = 1, 4
  447. IOLDSD( J ) = ISEED( J )
  448. 30 CONTINUE
  449. *
  450. * Compute "A".
  451. * Store as "Upper"; later, we will copy to other format.
  452. *
  453. * Control parameters:
  454. *
  455. * KMAGN KMODE KTYPE
  456. * =1 O(1) clustered 1 zero
  457. * =2 large clustered 2 identity
  458. * =3 small exponential (none)
  459. * =4 arithmetic diagonal, (w/ eigenvalues)
  460. * =5 random log symmetric, w/ eigenvalues
  461. * =6 random (none)
  462. * =7 random diagonal
  463. * =8 random symmetric
  464. * =9 positive definite
  465. * =10 diagonally dominant tridiagonal
  466. *
  467. IF( MTYPES.GT.MAXTYP )
  468. $ GO TO 100
  469. *
  470. ITYPE = KTYPE( JTYPE )
  471. IMODE = KMODE( JTYPE )
  472. *
  473. * Compute norm
  474. *
  475. GO TO ( 40, 50, 60 )KMAGN( JTYPE )
  476. *
  477. 40 CONTINUE
  478. ANORM = ONE
  479. GO TO 70
  480. *
  481. 50 CONTINUE
  482. ANORM = ( RTOVFL*ULP )*ANINV
  483. GO TO 70
  484. *
  485. 60 CONTINUE
  486. ANORM = RTUNFL*N*ULPINV
  487. GO TO 70
  488. *
  489. 70 CONTINUE
  490. *
  491. CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
  492. IINFO = 0
  493. IF( JTYPE.LE.15 ) THEN
  494. COND = ULPINV
  495. ELSE
  496. COND = ULPINV*ANINV / TEN
  497. END IF
  498. *
  499. * Special Matrices -- Identity & Jordan block
  500. *
  501. * Zero
  502. *
  503. IF( ITYPE.EQ.1 ) THEN
  504. IINFO = 0
  505. *
  506. ELSE IF( ITYPE.EQ.2 ) THEN
  507. *
  508. * Identity
  509. *
  510. DO 80 JCOL = 1, N
  511. A( K+1, JCOL ) = ANORM
  512. 80 CONTINUE
  513. *
  514. ELSE IF( ITYPE.EQ.4 ) THEN
  515. *
  516. * Diagonal Matrix, [Eigen]values Specified
  517. *
  518. CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
  519. $ ANORM, 0, 0, 'Q', A( K+1, 1 ), LDA,
  520. $ WORK( N+1 ), IINFO )
  521. *
  522. ELSE IF( ITYPE.EQ.5 ) THEN
  523. *
  524. * Symmetric, eigenvalues specified
  525. *
  526. CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
  527. $ ANORM, K, K, 'Q', A, LDA, WORK( N+1 ),
  528. $ IINFO )
  529. *
  530. ELSE IF( ITYPE.EQ.7 ) THEN
  531. *
  532. * Diagonal, random eigenvalues
  533. *
  534. CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
  535. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  536. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  537. $ ZERO, ANORM, 'Q', A( K+1, 1 ), LDA,
  538. $ IDUMMA, IINFO )
  539. *
  540. ELSE IF( ITYPE.EQ.8 ) THEN
  541. *
  542. * Symmetric, random eigenvalues
  543. *
  544. CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
  545. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  546. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, K, K,
  547. $ ZERO, ANORM, 'Q', A, LDA, IDUMMA, IINFO )
  548. *
  549. ELSE IF( ITYPE.EQ.9 ) THEN
  550. *
  551. * Positive definite, eigenvalues specified.
  552. *
  553. CALL DLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
  554. $ ANORM, K, K, 'Q', A, LDA, WORK( N+1 ),
  555. $ IINFO )
  556. *
  557. ELSE IF( ITYPE.EQ.10 ) THEN
  558. *
  559. * Positive definite tridiagonal, eigenvalues specified.
  560. *
  561. IF( N.GT.1 )
  562. $ K = MAX( 1, K )
  563. CALL DLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
  564. $ ANORM, 1, 1, 'Q', A( K, 1 ), LDA,
  565. $ WORK( N+1 ), IINFO )
  566. DO 90 I = 2, N
  567. TEMP1 = ABS( A( K, I ) ) /
  568. $ SQRT( ABS( A( K+1, I-1 )*A( K+1, I ) ) )
  569. IF( TEMP1.GT.HALF ) THEN
  570. A( K, I ) = HALF*SQRT( ABS( A( K+1,
  571. $ I-1 )*A( K+1, I ) ) )
  572. END IF
  573. 90 CONTINUE
  574. *
  575. ELSE
  576. *
  577. IINFO = 1
  578. END IF
  579. *
  580. IF( IINFO.NE.0 ) THEN
  581. WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N,
  582. $ JTYPE, IOLDSD
  583. INFO = ABS( IINFO )
  584. RETURN
  585. END IF
  586. *
  587. 100 CONTINUE
  588. *
  589. * Call DSBTRD to compute S and U from upper triangle.
  590. *
  591. CALL DLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
  592. *
  593. NTEST = 1
  594. CALL DSBTRD( 'V', 'U', N, K, WORK, LDA, SD, SE, U, LDU,
  595. $ WORK( LDA*N+1 ), IINFO )
  596. *
  597. IF( IINFO.NE.0 ) THEN
  598. WRITE( NOUNIT, FMT = 9999 )'DSBTRD(U)', IINFO, N,
  599. $ JTYPE, IOLDSD
  600. INFO = ABS( IINFO )
  601. IF( IINFO.LT.0 ) THEN
  602. RETURN
  603. ELSE
  604. RESULT( 1 ) = ULPINV
  605. GO TO 150
  606. END IF
  607. END IF
  608. *
  609. * Do tests 1 and 2
  610. *
  611. CALL DSBT21( 'Upper', N, K, 1, A, LDA, SD, SE, U, LDU,
  612. $ WORK, RESULT( 1 ) )
  613. *
  614. * Convert A from Upper-Triangle-Only storage to
  615. * Lower-Triangle-Only storage.
  616. *
  617. DO 120 JC = 1, N
  618. DO 110 JR = 0, MIN( K, N-JC )
  619. A( JR+1, JC ) = A( K+1-JR, JC+JR )
  620. 110 CONTINUE
  621. 120 CONTINUE
  622. DO 140 JC = N + 1 - K, N
  623. DO 130 JR = MIN( K, N-JC ) + 1, K
  624. A( JR+1, JC ) = ZERO
  625. 130 CONTINUE
  626. 140 CONTINUE
  627. *
  628. * Call DSBTRD to compute S and U from lower triangle
  629. *
  630. CALL DLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
  631. *
  632. NTEST = 3
  633. CALL DSBTRD( 'V', 'L', N, K, WORK, LDA, SD, SE, U, LDU,
  634. $ WORK( LDA*N+1 ), IINFO )
  635. *
  636. IF( IINFO.NE.0 ) THEN
  637. WRITE( NOUNIT, FMT = 9999 )'DSBTRD(L)', IINFO, N,
  638. $ JTYPE, IOLDSD
  639. INFO = ABS( IINFO )
  640. IF( IINFO.LT.0 ) THEN
  641. RETURN
  642. ELSE
  643. RESULT( 3 ) = ULPINV
  644. GO TO 150
  645. END IF
  646. END IF
  647. NTEST = 4
  648. *
  649. * Do tests 3 and 4
  650. *
  651. CALL DSBT21( 'Lower', N, K, 1, A, LDA, SD, SE, U, LDU,
  652. $ WORK, RESULT( 3 ) )
  653. *
  654. * End of Loop -- Check for RESULT(j) > THRESH
  655. *
  656. 150 CONTINUE
  657. NTESTT = NTESTT + NTEST
  658. *
  659. * Print out tests which fail.
  660. *
  661. DO 160 JR = 1, NTEST
  662. IF( RESULT( JR ).GE.THRESH ) THEN
  663. *
  664. * If this is the first test to fail,
  665. * print a header to the data file.
  666. *
  667. IF( NERRS.EQ.0 ) THEN
  668. WRITE( NOUNIT, FMT = 9998 )'DSB'
  669. WRITE( NOUNIT, FMT = 9997 )
  670. WRITE( NOUNIT, FMT = 9996 )
  671. WRITE( NOUNIT, FMT = 9995 )'Symmetric'
  672. WRITE( NOUNIT, FMT = 9994 )'orthogonal', '''',
  673. $ 'transpose', ( '''', J = 1, 4 )
  674. END IF
  675. NERRS = NERRS + 1
  676. WRITE( NOUNIT, FMT = 9993 )N, K, IOLDSD, JTYPE,
  677. $ JR, RESULT( JR )
  678. END IF
  679. 160 CONTINUE
  680. *
  681. 170 CONTINUE
  682. 180 CONTINUE
  683. 190 CONTINUE
  684. *
  685. * Summary
  686. *
  687. CALL DLASUM( 'DSB', NOUNIT, NERRS, NTESTT )
  688. RETURN
  689. *
  690. 9999 FORMAT( ' DCHKSB: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
  691. $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  692. *
  693. 9998 FORMAT( / 1X, A3,
  694. $ ' -- Real Symmetric Banded Tridiagonal Reduction Routines' )
  695. 9997 FORMAT( ' Matrix types (see DCHKSB for details): ' )
  696. *
  697. 9996 FORMAT( / ' Special Matrices:',
  698. $ / ' 1=Zero matrix. ',
  699. $ ' 5=Diagonal: clustered entries.',
  700. $ / ' 2=Identity matrix. ',
  701. $ ' 6=Diagonal: large, evenly spaced.',
  702. $ / ' 3=Diagonal: evenly spaced entries. ',
  703. $ ' 7=Diagonal: small, evenly spaced.',
  704. $ / ' 4=Diagonal: geometr. spaced entries.' )
  705. 9995 FORMAT( ' Dense ', A, ' Banded Matrices:',
  706. $ / ' 8=Evenly spaced eigenvals. ',
  707. $ ' 12=Small, evenly spaced eigenvals.',
  708. $ / ' 9=Geometrically spaced eigenvals. ',
  709. $ ' 13=Matrix with random O(1) entries.',
  710. $ / ' 10=Clustered eigenvalues. ',
  711. $ ' 14=Matrix with large random entries.',
  712. $ / ' 11=Large, evenly spaced eigenvals. ',
  713. $ ' 15=Matrix with small random entries.' )
  714. *
  715. 9994 FORMAT( / ' Tests performed: (S is Tridiag, U is ', A, ',',
  716. $ / 20X, A, ' means ', A, '.', / ' UPLO=''U'':',
  717. $ / ' 1= | A - U S U', A1, ' | / ( |A| n ulp ) ',
  718. $ ' 2= | I - U U', A1, ' | / ( n ulp )', / ' UPLO=''L'':',
  719. $ / ' 3= | A - U S U', A1, ' | / ( |A| n ulp ) ',
  720. $ ' 4= | I - U U', A1, ' | / ( n ulp )' )
  721. 9993 FORMAT( ' N=', I5, ', K=', I4, ', seed=', 4( I4, ',' ), ' type ',
  722. $ I2, ', test(', I2, ')=', G10.3 )
  723. *
  724. * End of DCHKSB
  725. *
  726. END