You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sorcsd2by1.f 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710
  1. *> \brief \b SORCSD2BY1
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SORCSD2BY1 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorcsd2by1.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorcsd2by1.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorcsd2by1.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  22. * X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  23. * LDV1T, WORK, LWORK, IWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBU1, JOBU2, JOBV1T
  27. * INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  28. * $ M, P, Q
  29. * ..
  30. * .. Array Arguments ..
  31. * REAL THETA(*)
  32. * REAL U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  33. * $ X11(LDX11,*), X21(LDX21,*)
  34. * INTEGER IWORK(*)
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. *> =============
  40. *>
  41. *>\verbatim
  42. *>
  43. *> SORCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
  44. *> orthonormal columns that has been partitioned into a 2-by-1 block
  45. *> structure:
  46. *>
  47. *> [ I 0 0 ]
  48. *> [ 0 C 0 ]
  49. *> [ X11 ] [ U1 | ] [ 0 0 0 ]
  50. *> X = [-----] = [---------] [----------] V1**T .
  51. *> [ X21 ] [ | U2 ] [ 0 0 0 ]
  52. *> [ 0 S 0 ]
  53. *> [ 0 0 I ]
  54. *>
  55. *> X11 is P-by-Q. The orthogonal matrices U1, U2, and V1 are P-by-P,
  56. *> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R
  57. *> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which
  58. *> R = MIN(P,M-P,Q,M-Q).
  59. *> \endverbatim
  60. *
  61. * Arguments:
  62. * ==========
  63. *
  64. *> \param[in] JOBU1
  65. *> \verbatim
  66. *> JOBU1 is CHARACTER
  67. *> = 'Y': U1 is computed;
  68. *> otherwise: U1 is not computed.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] JOBU2
  72. *> \verbatim
  73. *> JOBU2 is CHARACTER
  74. *> = 'Y': U2 is computed;
  75. *> otherwise: U2 is not computed.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] JOBV1T
  79. *> \verbatim
  80. *> JOBV1T is CHARACTER
  81. *> = 'Y': V1T is computed;
  82. *> otherwise: V1T is not computed.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] M
  86. *> \verbatim
  87. *> M is INTEGER
  88. *> The number of rows in X.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] P
  92. *> \verbatim
  93. *> P is INTEGER
  94. *> The number of rows in X11. 0 <= P <= M.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] Q
  98. *> \verbatim
  99. *> Q is INTEGER
  100. *> The number of columns in X11 and X21. 0 <= Q <= M.
  101. *> \endverbatim
  102. *>
  103. *> \param[in,out] X11
  104. *> \verbatim
  105. *> X11 is REAL array, dimension (LDX11,Q)
  106. *> On entry, part of the orthogonal matrix whose CSD is desired.
  107. *> \endverbatim
  108. *>
  109. *> \param[in] LDX11
  110. *> \verbatim
  111. *> LDX11 is INTEGER
  112. *> The leading dimension of X11. LDX11 >= MAX(1,P).
  113. *> \endverbatim
  114. *>
  115. *> \param[in,out] X21
  116. *> \verbatim
  117. *> X21 is REAL array, dimension (LDX21,Q)
  118. *> On entry, part of the orthogonal matrix whose CSD is desired.
  119. *> \endverbatim
  120. *>
  121. *> \param[in] LDX21
  122. *> \verbatim
  123. *> LDX21 is INTEGER
  124. *> The leading dimension of X21. LDX21 >= MAX(1,M-P).
  125. *> \endverbatim
  126. *>
  127. *> \param[out] THETA
  128. *> \verbatim
  129. *> THETA is REAL array, dimension (R), in which R =
  130. *> MIN(P,M-P,Q,M-Q).
  131. *> C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  132. *> S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  133. *> \endverbatim
  134. *>
  135. *> \param[out] U1
  136. *> \verbatim
  137. *> U1 is REAL array, dimension (P)
  138. *> If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
  139. *> \endverbatim
  140. *>
  141. *> \param[in] LDU1
  142. *> \verbatim
  143. *> LDU1 is INTEGER
  144. *> The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  145. *> MAX(1,P).
  146. *> \endverbatim
  147. *>
  148. *> \param[out] U2
  149. *> \verbatim
  150. *> U2 is REAL array, dimension (M-P)
  151. *> If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal
  152. *> matrix U2.
  153. *> \endverbatim
  154. *>
  155. *> \param[in] LDU2
  156. *> \verbatim
  157. *> LDU2 is INTEGER
  158. *> The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  159. *> MAX(1,M-P).
  160. *> \endverbatim
  161. *>
  162. *> \param[out] V1T
  163. *> \verbatim
  164. *> V1T is REAL array, dimension (Q)
  165. *> If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal
  166. *> matrix V1**T.
  167. *> \endverbatim
  168. *>
  169. *> \param[in] LDV1T
  170. *> \verbatim
  171. *> LDV1T is INTEGER
  172. *> The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  173. *> MAX(1,Q).
  174. *> \endverbatim
  175. *>
  176. *> \param[out] WORK
  177. *> \verbatim
  178. *> WORK is REAL array, dimension (MAX(1,LWORK))
  179. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  180. *> If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
  181. *> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  182. *> define the matrix in intermediate bidiagonal-block form
  183. *> remaining after nonconvergence. INFO specifies the number
  184. *> of nonzero PHI's.
  185. *> \endverbatim
  186. *>
  187. *> \param[in] LWORK
  188. *> \verbatim
  189. *> LWORK is INTEGER
  190. *> The dimension of the array WORK.
  191. *>
  192. *> If LWORK = -1, then a workspace query is assumed; the routine
  193. *> only calculates the optimal size of the WORK array, returns
  194. *> this value as the first entry of the work array, and no error
  195. *> message related to LWORK is issued by XERBLA.
  196. *> \endverbatim
  197. *>
  198. *> \param[out] IWORK
  199. *> \verbatim
  200. *> IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
  201. *> \endverbatim
  202. *>
  203. *> \param[out] INFO
  204. *> \verbatim
  205. *> INFO is INTEGER
  206. *> = 0: successful exit.
  207. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  208. *> > 0: SBBCSD did not converge. See the description of WORK
  209. *> above for details.
  210. *> \endverbatim
  211. *
  212. *> \par References:
  213. * ================
  214. *>
  215. *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  216. *> Algorithms, 50(1):33-65, 2009.
  217. *
  218. * Authors:
  219. * ========
  220. *
  221. *> \author Univ. of Tennessee
  222. *> \author Univ. of California Berkeley
  223. *> \author Univ. of Colorado Denver
  224. *> \author NAG Ltd.
  225. *
  226. *> \date July 2012
  227. *
  228. *> \ingroup realOTHERcomputational
  229. *
  230. * =====================================================================
  231. SUBROUTINE SORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  232. $ X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  233. $ LDV1T, WORK, LWORK, IWORK, INFO )
  234. *
  235. * -- LAPACK computational routine (version 3.6.0) --
  236. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  237. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  238. * July 2012
  239. *
  240. * .. Scalar Arguments ..
  241. CHARACTER JOBU1, JOBU2, JOBV1T
  242. INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  243. $ M, P, Q
  244. * ..
  245. * .. Array Arguments ..
  246. REAL THETA(*)
  247. REAL U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  248. $ X11(LDX11,*), X21(LDX21,*)
  249. INTEGER IWORK(*)
  250. * ..
  251. *
  252. * =====================================================================
  253. *
  254. * .. Parameters ..
  255. REAL ONE, ZERO
  256. PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 )
  257. * ..
  258. * .. Local Scalars ..
  259. INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  260. $ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  261. $ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  262. $ J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
  263. $ LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
  264. $ LWORKMIN, LWORKOPT, R
  265. LOGICAL LQUERY, WANTU1, WANTU2, WANTV1T
  266. * ..
  267. * .. External Subroutines ..
  268. EXTERNAL SBBCSD, SCOPY, SLACPY, SLAPMR, SLAPMT, SORBDB1,
  269. $ SORBDB2, SORBDB3, SORBDB4, SORGLQ, SORGQR,
  270. $ XERBLA
  271. * ..
  272. * .. External Functions ..
  273. LOGICAL LSAME
  274. EXTERNAL LSAME
  275. * ..
  276. * .. Intrinsic Function ..
  277. INTRINSIC INT, MAX, MIN
  278. * ..
  279. * .. Executable Statements ..
  280. *
  281. * Test input arguments
  282. *
  283. INFO = 0
  284. WANTU1 = LSAME( JOBU1, 'Y' )
  285. WANTU2 = LSAME( JOBU2, 'Y' )
  286. WANTV1T = LSAME( JOBV1T, 'Y' )
  287. LQUERY = LWORK .EQ. -1
  288. *
  289. IF( M .LT. 0 ) THEN
  290. INFO = -4
  291. ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  292. INFO = -5
  293. ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  294. INFO = -6
  295. ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  296. INFO = -8
  297. ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  298. INFO = -10
  299. ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
  300. INFO = -13
  301. ELSE IF( WANTU2 .AND. LDU2 .LT. M - P ) THEN
  302. INFO = -15
  303. ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
  304. INFO = -17
  305. END IF
  306. *
  307. R = MIN( P, M-P, Q, M-Q )
  308. *
  309. * Compute workspace
  310. *
  311. * WORK layout:
  312. * |-------------------------------------------------------|
  313. * | LWORKOPT (1) |
  314. * |-------------------------------------------------------|
  315. * | PHI (MAX(1,R-1)) |
  316. * |-------------------------------------------------------|
  317. * | TAUP1 (MAX(1,P)) | B11D (R) |
  318. * | TAUP2 (MAX(1,M-P)) | B11E (R-1) |
  319. * | TAUQ1 (MAX(1,Q)) | B12D (R) |
  320. * |-----------------------------------------| B12E (R-1) |
  321. * | SORBDB WORK | SORGQR WORK | SORGLQ WORK | B21D (R) |
  322. * | | | | B21E (R-1) |
  323. * | | | | B22D (R) |
  324. * | | | | B22E (R-1) |
  325. * | | | | SBBCSD WORK |
  326. * |-------------------------------------------------------|
  327. *
  328. IF( INFO .EQ. 0 ) THEN
  329. IPHI = 2
  330. IB11D = IPHI + MAX( 1, R-1 )
  331. IB11E = IB11D + MAX( 1, R )
  332. IB12D = IB11E + MAX( 1, R - 1 )
  333. IB12E = IB12D + MAX( 1, R )
  334. IB21D = IB12E + MAX( 1, R - 1 )
  335. IB21E = IB21D + MAX( 1, R )
  336. IB22D = IB21E + MAX( 1, R - 1 )
  337. IB22E = IB22D + MAX( 1, R )
  338. IBBCSD = IB22E + MAX( 1, R - 1 )
  339. ITAUP1 = IPHI + MAX( 1, R-1 )
  340. ITAUP2 = ITAUP1 + MAX( 1, P )
  341. ITAUQ1 = ITAUP2 + MAX( 1, M-P )
  342. IORBDB = ITAUQ1 + MAX( 1, Q )
  343. IORGQR = ITAUQ1 + MAX( 1, Q )
  344. IORGLQ = ITAUQ1 + MAX( 1, Q )
  345. IF( R .EQ. Q ) THEN
  346. CALL SORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  347. $ 0, 0, WORK, -1, CHILDINFO )
  348. LORBDB = INT( WORK(1) )
  349. IF( P .GE. M-P ) THEN
  350. CALL SORGQR( P, P, Q, U1, LDU1, 0, WORK(1), -1,
  351. $ CHILDINFO )
  352. LORGQRMIN = MAX( 1, P )
  353. LORGQROPT = INT( WORK(1) )
  354. ELSE
  355. CALL SORGQR( M-P, M-P, Q, U2, LDU2, 0, WORK(1), -1,
  356. $ CHILDINFO )
  357. LORGQRMIN = MAX( 1, M-P )
  358. LORGQROPT = INT( WORK(1) )
  359. END IF
  360. CALL SORGLQ( MAX(0,Q-1), MAX(0,Q-1), MAX(0,Q-1), V1T, LDV1T,
  361. $ 0, WORK(1), -1, CHILDINFO )
  362. LORGLQMIN = MAX( 1, Q-1 )
  363. LORGLQOPT = INT( WORK(1) )
  364. CALL SBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  365. $ 0, U1, LDU1, U2, LDU2, V1T, LDV1T, 0, 1, 0, 0,
  366. $ 0, 0, 0, 0, 0, 0, WORK(1), -1, CHILDINFO )
  367. LBBCSD = INT( WORK(1) )
  368. ELSE IF( R .EQ. P ) THEN
  369. CALL SORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  370. $ 0, 0, WORK(1), -1, CHILDINFO )
  371. LORBDB = INT( WORK(1) )
  372. IF( P-1 .GE. M-P ) THEN
  373. CALL SORGQR( P-1, P-1, P-1, U1(2,2), LDU1, 0, WORK(1),
  374. $ -1, CHILDINFO )
  375. LORGQRMIN = MAX( 1, P-1 )
  376. LORGQROPT = INT( WORK(1) )
  377. ELSE
  378. CALL SORGQR( M-P, M-P, Q, U2, LDU2, 0, WORK(1), -1,
  379. $ CHILDINFO )
  380. LORGQRMIN = MAX( 1, M-P )
  381. LORGQROPT = INT( WORK(1) )
  382. END IF
  383. CALL SORGLQ( Q, Q, R, V1T, LDV1T, 0, WORK(1), -1,
  384. $ CHILDINFO )
  385. LORGLQMIN = MAX( 1, Q )
  386. LORGLQOPT = INT( WORK(1) )
  387. CALL SBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  388. $ 0, V1T, LDV1T, 0, 1, U1, LDU1, U2, LDU2, 0, 0,
  389. $ 0, 0, 0, 0, 0, 0, WORK(1), -1, CHILDINFO )
  390. LBBCSD = INT( WORK(1) )
  391. ELSE IF( R .EQ. M-P ) THEN
  392. CALL SORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  393. $ 0, 0, WORK(1), -1, CHILDINFO )
  394. LORBDB = INT( WORK(1) )
  395. IF( P .GE. M-P-1 ) THEN
  396. CALL SORGQR( P, P, Q, U1, LDU1, 0, WORK(1), -1,
  397. $ CHILDINFO )
  398. LORGQRMIN = MAX( 1, P )
  399. LORGQROPT = INT( WORK(1) )
  400. ELSE
  401. CALL SORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, 0,
  402. $ WORK(1), -1, CHILDINFO )
  403. LORGQRMIN = MAX( 1, M-P-1 )
  404. LORGQROPT = INT( WORK(1) )
  405. END IF
  406. CALL SORGLQ( Q, Q, R, V1T, LDV1T, 0, WORK(1), -1,
  407. $ CHILDINFO )
  408. LORGLQMIN = MAX( 1, Q )
  409. LORGLQOPT = INT( WORK(1) )
  410. CALL SBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  411. $ THETA, 0, 0, 1, V1T, LDV1T, U2, LDU2, U1, LDU1,
  412. $ 0, 0, 0, 0, 0, 0, 0, 0, WORK(1), -1,
  413. $ CHILDINFO )
  414. LBBCSD = INT( WORK(1) )
  415. ELSE
  416. CALL SORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  417. $ 0, 0, 0, WORK(1), -1, CHILDINFO )
  418. LORBDB = M + INT( WORK(1) )
  419. IF( P .GE. M-P ) THEN
  420. CALL SORGQR( P, P, M-Q, U1, LDU1, 0, WORK(1), -1,
  421. $ CHILDINFO )
  422. LORGQRMIN = MAX( 1, P )
  423. LORGQROPT = INT( WORK(1) )
  424. ELSE
  425. CALL SORGQR( M-P, M-P, M-Q, U2, LDU2, 0, WORK(1), -1,
  426. $ CHILDINFO )
  427. LORGQRMIN = MAX( 1, M-P )
  428. LORGQROPT = INT( WORK(1) )
  429. END IF
  430. CALL SORGLQ( Q, Q, Q, V1T, LDV1T, 0, WORK(1), -1,
  431. $ CHILDINFO )
  432. LORGLQMIN = MAX( 1, Q )
  433. LORGLQOPT = INT( WORK(1) )
  434. CALL SBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  435. $ THETA, 0, U2, LDU2, U1, LDU1, 0, 1, V1T, LDV1T,
  436. $ 0, 0, 0, 0, 0, 0, 0, 0, WORK(1), -1,
  437. $ CHILDINFO )
  438. LBBCSD = INT( WORK(1) )
  439. END IF
  440. LWORKMIN = MAX( IORBDB+LORBDB-1,
  441. $ IORGQR+LORGQRMIN-1,
  442. $ IORGLQ+LORGLQMIN-1,
  443. $ IBBCSD+LBBCSD-1 )
  444. LWORKOPT = MAX( IORBDB+LORBDB-1,
  445. $ IORGQR+LORGQROPT-1,
  446. $ IORGLQ+LORGLQOPT-1,
  447. $ IBBCSD+LBBCSD-1 )
  448. WORK(1) = LWORKOPT
  449. IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  450. INFO = -19
  451. END IF
  452. END IF
  453. IF( INFO .NE. 0 ) THEN
  454. CALL XERBLA( 'SORCSD2BY1', -INFO )
  455. RETURN
  456. ELSE IF( LQUERY ) THEN
  457. RETURN
  458. END IF
  459. LORGQR = LWORK-IORGQR+1
  460. LORGLQ = LWORK-IORGLQ+1
  461. *
  462. * Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
  463. * in which R = MIN(P,M-P,Q,M-Q)
  464. *
  465. IF( R .EQ. Q ) THEN
  466. *
  467. * Case 1: R = Q
  468. *
  469. * Simultaneously bidiagonalize X11 and X21
  470. *
  471. CALL SORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  472. $ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  473. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  474. *
  475. * Accumulate Householder reflectors
  476. *
  477. IF( WANTU1 .AND. P .GT. 0 ) THEN
  478. CALL SLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  479. CALL SORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  480. $ LORGQR, CHILDINFO )
  481. END IF
  482. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  483. CALL SLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  484. CALL SORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  485. $ WORK(IORGQR), LORGQR, CHILDINFO )
  486. END IF
  487. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  488. V1T(1,1) = ONE
  489. DO J = 2, Q
  490. V1T(1,J) = ZERO
  491. V1T(J,1) = ZERO
  492. END DO
  493. CALL SLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
  494. $ LDV1T )
  495. CALL SORGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  496. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  497. END IF
  498. *
  499. * Simultaneously diagonalize X11 and X21.
  500. *
  501. CALL SBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  502. $ WORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, 0, 1,
  503. $ WORK(IB11D), WORK(IB11E), WORK(IB12D),
  504. $ WORK(IB12E), WORK(IB21D), WORK(IB21E),
  505. $ WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
  506. $ CHILDINFO )
  507. *
  508. * Permute rows and columns to place zero submatrices in
  509. * preferred positions
  510. *
  511. IF( Q .GT. 0 .AND. WANTU2 ) THEN
  512. DO I = 1, Q
  513. IWORK(I) = M - P - Q + I
  514. END DO
  515. DO I = Q + 1, M - P
  516. IWORK(I) = I - Q
  517. END DO
  518. CALL SLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  519. END IF
  520. ELSE IF( R .EQ. P ) THEN
  521. *
  522. * Case 2: R = P
  523. *
  524. * Simultaneously bidiagonalize X11 and X21
  525. *
  526. CALL SORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  527. $ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  528. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  529. *
  530. * Accumulate Householder reflectors
  531. *
  532. IF( WANTU1 .AND. P .GT. 0 ) THEN
  533. U1(1,1) = ONE
  534. DO J = 2, P
  535. U1(1,J) = ZERO
  536. U1(J,1) = ZERO
  537. END DO
  538. CALL SLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
  539. CALL SORGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
  540. $ WORK(IORGQR), LORGQR, CHILDINFO )
  541. END IF
  542. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  543. CALL SLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  544. CALL SORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  545. $ WORK(IORGQR), LORGQR, CHILDINFO )
  546. END IF
  547. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  548. CALL SLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
  549. CALL SORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  550. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  551. END IF
  552. *
  553. * Simultaneously diagonalize X11 and X21.
  554. *
  555. CALL SBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  556. $ WORK(IPHI), V1T, LDV1T, 0, 1, U1, LDU1, U2, LDU2,
  557. $ WORK(IB11D), WORK(IB11E), WORK(IB12D),
  558. $ WORK(IB12E), WORK(IB21D), WORK(IB21E),
  559. $ WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
  560. $ CHILDINFO )
  561. *
  562. * Permute rows and columns to place identity submatrices in
  563. * preferred positions
  564. *
  565. IF( Q .GT. 0 .AND. WANTU2 ) THEN
  566. DO I = 1, Q
  567. IWORK(I) = M - P - Q + I
  568. END DO
  569. DO I = Q + 1, M - P
  570. IWORK(I) = I - Q
  571. END DO
  572. CALL SLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  573. END IF
  574. ELSE IF( R .EQ. M-P ) THEN
  575. *
  576. * Case 3: R = M-P
  577. *
  578. * Simultaneously bidiagonalize X11 and X21
  579. *
  580. CALL SORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  581. $ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  582. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  583. *
  584. * Accumulate Householder reflectors
  585. *
  586. IF( WANTU1 .AND. P .GT. 0 ) THEN
  587. CALL SLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  588. CALL SORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  589. $ LORGQR, CHILDINFO )
  590. END IF
  591. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  592. U2(1,1) = ONE
  593. DO J = 2, M-P
  594. U2(1,J) = ZERO
  595. U2(J,1) = ZERO
  596. END DO
  597. CALL SLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
  598. $ LDU2 )
  599. CALL SORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  600. $ WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
  601. END IF
  602. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  603. CALL SLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
  604. CALL SORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  605. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  606. END IF
  607. *
  608. * Simultaneously diagonalize X11 and X21.
  609. *
  610. CALL SBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  611. $ THETA, WORK(IPHI), 0, 1, V1T, LDV1T, U2, LDU2, U1,
  612. $ LDU1, WORK(IB11D), WORK(IB11E), WORK(IB12D),
  613. $ WORK(IB12E), WORK(IB21D), WORK(IB21E),
  614. $ WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
  615. $ CHILDINFO )
  616. *
  617. * Permute rows and columns to place identity submatrices in
  618. * preferred positions
  619. *
  620. IF( Q .GT. R ) THEN
  621. DO I = 1, R
  622. IWORK(I) = Q - R + I
  623. END DO
  624. DO I = R + 1, Q
  625. IWORK(I) = I - R
  626. END DO
  627. IF( WANTU1 ) THEN
  628. CALL SLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
  629. END IF
  630. IF( WANTV1T ) THEN
  631. CALL SLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
  632. END IF
  633. END IF
  634. ELSE
  635. *
  636. * Case 4: R = M-Q
  637. *
  638. * Simultaneously bidiagonalize X11 and X21
  639. *
  640. CALL SORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  641. $ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  642. $ WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
  643. $ LORBDB-M, CHILDINFO )
  644. *
  645. * Accumulate Householder reflectors
  646. *
  647. IF( WANTU1 .AND. P .GT. 0 ) THEN
  648. CALL SCOPY( P, WORK(IORBDB), 1, U1, 1 )
  649. DO J = 2, P
  650. U1(1,J) = ZERO
  651. END DO
  652. CALL SLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
  653. $ LDU1 )
  654. CALL SORGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
  655. $ WORK(IORGQR), LORGQR, CHILDINFO )
  656. END IF
  657. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  658. CALL SCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
  659. DO J = 2, M-P
  660. U2(1,J) = ZERO
  661. END DO
  662. CALL SLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
  663. $ LDU2 )
  664. CALL SORGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
  665. $ WORK(IORGQR), LORGQR, CHILDINFO )
  666. END IF
  667. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  668. CALL SLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
  669. CALL SLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
  670. $ V1T(M-Q+1,M-Q+1), LDV1T )
  671. CALL SLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
  672. $ V1T(P+1,P+1), LDV1T )
  673. CALL SORGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
  674. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  675. END IF
  676. *
  677. * Simultaneously diagonalize X11 and X21.
  678. *
  679. CALL SBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  680. $ THETA, WORK(IPHI), U2, LDU2, U1, LDU1, 0, 1, V1T,
  681. $ LDV1T, WORK(IB11D), WORK(IB11E), WORK(IB12D),
  682. $ WORK(IB12E), WORK(IB21D), WORK(IB21E),
  683. $ WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD,
  684. $ CHILDINFO )
  685. *
  686. * Permute rows and columns to place identity submatrices in
  687. * preferred positions
  688. *
  689. IF( P .GT. R ) THEN
  690. DO I = 1, R
  691. IWORK(I) = P - R + I
  692. END DO
  693. DO I = R + 1, P
  694. IWORK(I) = I - R
  695. END DO
  696. IF( WANTU1 ) THEN
  697. CALL SLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
  698. END IF
  699. IF( WANTV1T ) THEN
  700. CALL SLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
  701. END IF
  702. END IF
  703. END IF
  704. *
  705. RETURN
  706. *
  707. * End of SORCSD2BY1
  708. *
  709. END