You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgghd3.f 32 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896
  1. *> \brief \b DGGHD3
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGGHD3 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgghd3.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgghd3.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgghd3.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
  22. * LDQ, Z, LDZ, WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER COMPQ, COMPZ
  26. * INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N, LWORK
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  30. * $ Z( LDZ, * ), WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DGGHD3 reduces a pair of real matrices (A,B) to generalized upper
  40. *> Hessenberg form using orthogonal transformations, where A is a
  41. *> general matrix and B is upper triangular. The form of the
  42. *> generalized eigenvalue problem is
  43. *> A*x = lambda*B*x,
  44. *> and B is typically made upper triangular by computing its QR
  45. *> factorization and moving the orthogonal matrix Q to the left side
  46. *> of the equation.
  47. *>
  48. *> This subroutine simultaneously reduces A to a Hessenberg matrix H:
  49. *> Q**T*A*Z = H
  50. *> and transforms B to another upper triangular matrix T:
  51. *> Q**T*B*Z = T
  52. *> in order to reduce the problem to its standard form
  53. *> H*y = lambda*T*y
  54. *> where y = Z**T*x.
  55. *>
  56. *> The orthogonal matrices Q and Z are determined as products of Givens
  57. *> rotations. They may either be formed explicitly, or they may be
  58. *> postmultiplied into input matrices Q1 and Z1, so that
  59. *>
  60. *> Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T
  61. *>
  62. *> Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T
  63. *>
  64. *> If Q1 is the orthogonal matrix from the QR factorization of B in the
  65. *> original equation A*x = lambda*B*x, then DGGHD3 reduces the original
  66. *> problem to generalized Hessenberg form.
  67. *>
  68. *> This is a blocked variant of DGGHRD, using matrix-matrix
  69. *> multiplications for parts of the computation to enhance performance.
  70. *> \endverbatim
  71. *
  72. * Arguments:
  73. * ==========
  74. *
  75. *> \param[in] COMPQ
  76. *> \verbatim
  77. *> COMPQ is CHARACTER*1
  78. *> = 'N': do not compute Q;
  79. *> = 'I': Q is initialized to the unit matrix, and the
  80. *> orthogonal matrix Q is returned;
  81. *> = 'V': Q must contain an orthogonal matrix Q1 on entry,
  82. *> and the product Q1*Q is returned.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] COMPZ
  86. *> \verbatim
  87. *> COMPZ is CHARACTER*1
  88. *> = 'N': do not compute Z;
  89. *> = 'I': Z is initialized to the unit matrix, and the
  90. *> orthogonal matrix Z is returned;
  91. *> = 'V': Z must contain an orthogonal matrix Z1 on entry,
  92. *> and the product Z1*Z is returned.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] N
  96. *> \verbatim
  97. *> N is INTEGER
  98. *> The order of the matrices A and B. N >= 0.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] ILO
  102. *> \verbatim
  103. *> ILO is INTEGER
  104. *> \endverbatim
  105. *>
  106. *> \param[in] IHI
  107. *> \verbatim
  108. *> IHI is INTEGER
  109. *>
  110. *> ILO and IHI mark the rows and columns of A which are to be
  111. *> reduced. It is assumed that A is already upper triangular
  112. *> in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are
  113. *> normally set by a previous call to DGGBAL; otherwise they
  114. *> should be set to 1 and N respectively.
  115. *> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
  116. *> \endverbatim
  117. *>
  118. *> \param[in,out] A
  119. *> \verbatim
  120. *> A is DOUBLE PRECISION array, dimension (LDA, N)
  121. *> On entry, the N-by-N general matrix to be reduced.
  122. *> On exit, the upper triangle and the first subdiagonal of A
  123. *> are overwritten with the upper Hessenberg matrix H, and the
  124. *> rest is set to zero.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LDA
  128. *> \verbatim
  129. *> LDA is INTEGER
  130. *> The leading dimension of the array A. LDA >= max(1,N).
  131. *> \endverbatim
  132. *>
  133. *> \param[in,out] B
  134. *> \verbatim
  135. *> B is DOUBLE PRECISION array, dimension (LDB, N)
  136. *> On entry, the N-by-N upper triangular matrix B.
  137. *> On exit, the upper triangular matrix T = Q**T B Z. The
  138. *> elements below the diagonal are set to zero.
  139. *> \endverbatim
  140. *>
  141. *> \param[in] LDB
  142. *> \verbatim
  143. *> LDB is INTEGER
  144. *> The leading dimension of the array B. LDB >= max(1,N).
  145. *> \endverbatim
  146. *>
  147. *> \param[in,out] Q
  148. *> \verbatim
  149. *> Q is DOUBLE PRECISION array, dimension (LDQ, N)
  150. *> On entry, if COMPQ = 'V', the orthogonal matrix Q1,
  151. *> typically from the QR factorization of B.
  152. *> On exit, if COMPQ='I', the orthogonal matrix Q, and if
  153. *> COMPQ = 'V', the product Q1*Q.
  154. *> Not referenced if COMPQ='N'.
  155. *> \endverbatim
  156. *>
  157. *> \param[in] LDQ
  158. *> \verbatim
  159. *> LDQ is INTEGER
  160. *> The leading dimension of the array Q.
  161. *> LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
  162. *> \endverbatim
  163. *>
  164. *> \param[in,out] Z
  165. *> \verbatim
  166. *> Z is DOUBLE PRECISION array, dimension (LDZ, N)
  167. *> On entry, if COMPZ = 'V', the orthogonal matrix Z1.
  168. *> On exit, if COMPZ='I', the orthogonal matrix Z, and if
  169. *> COMPZ = 'V', the product Z1*Z.
  170. *> Not referenced if COMPZ='N'.
  171. *> \endverbatim
  172. *>
  173. *> \param[in] LDZ
  174. *> \verbatim
  175. *> LDZ is INTEGER
  176. *> The leading dimension of the array Z.
  177. *> LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
  178. *> \endverbatim
  179. *>
  180. *> \param[out] WORK
  181. *> \verbatim
  182. *> WORK is DOUBLE PRECISION array, dimension (LWORK)
  183. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  184. *> \endverbatim
  185. *>
  186. *> \param[in] LWORK
  187. *> \verbatim
  188. *> LWORK is INTEGER
  189. *> The length of the array WORK. LWORK >= 1.
  190. *> For optimum performance LWORK >= 6*N*NB, where NB is the
  191. *> optimal blocksize.
  192. *>
  193. *> If LWORK = -1, then a workspace query is assumed; the routine
  194. *> only calculates the optimal size of the WORK array, returns
  195. *> this value as the first entry of the WORK array, and no error
  196. *> message related to LWORK is issued by XERBLA.
  197. *> \endverbatim
  198. *>
  199. *> \param[out] INFO
  200. *> \verbatim
  201. *> INFO is INTEGER
  202. *> = 0: successful exit.
  203. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  204. *> \endverbatim
  205. *
  206. * Authors:
  207. * ========
  208. *
  209. *> \author Univ. of Tennessee
  210. *> \author Univ. of California Berkeley
  211. *> \author Univ. of Colorado Denver
  212. *> \author NAG Ltd.
  213. *
  214. *> \date January 2015
  215. *
  216. *> \ingroup doubleOTHERcomputational
  217. *
  218. *> \par Further Details:
  219. * =====================
  220. *>
  221. *> \verbatim
  222. *>
  223. *> This routine reduces A to Hessenberg form and maintains B in
  224. *> using a blocked variant of Moler and Stewart's original algorithm,
  225. *> as described by Kagstrom, Kressner, Quintana-Orti, and Quintana-Orti
  226. *> (BIT 2008).
  227. *> \endverbatim
  228. *>
  229. * =====================================================================
  230. SUBROUTINE DGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
  231. $ LDQ, Z, LDZ, WORK, LWORK, INFO )
  232. *
  233. * -- LAPACK computational routine (version 3.6.0) --
  234. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  235. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  236. * January 2015
  237. *
  238. IMPLICIT NONE
  239. *
  240. * .. Scalar Arguments ..
  241. CHARACTER COMPQ, COMPZ
  242. INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N, LWORK
  243. * ..
  244. * .. Array Arguments ..
  245. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  246. $ Z( LDZ, * ), WORK( * )
  247. * ..
  248. *
  249. * =====================================================================
  250. *
  251. * .. Parameters ..
  252. DOUBLE PRECISION ZERO, ONE
  253. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  254. * ..
  255. * .. Local Scalars ..
  256. LOGICAL BLK22, INITQ, INITZ, LQUERY, WANTQ, WANTZ
  257. CHARACTER*1 COMPQ2, COMPZ2
  258. INTEGER COLA, I, IERR, J, J0, JCOL, JJ, JROW, K,
  259. $ KACC22, LEN, LWKOPT, N2NB, NB, NBLST, NBMIN,
  260. $ NH, NNB, NX, PPW, PPWO, PW, TOP, TOPQ
  261. DOUBLE PRECISION C, C1, C2, S, S1, S2, TEMP, TEMP1, TEMP2, TEMP3
  262. * ..
  263. * .. External Functions ..
  264. LOGICAL LSAME
  265. INTEGER ILAENV
  266. EXTERNAL ILAENV, LSAME
  267. * ..
  268. * .. External Subroutines ..
  269. EXTERNAL DGGHRD, DLARTG, DLASET, DORM22, DROT, XERBLA
  270. * ..
  271. * .. Intrinsic Functions ..
  272. INTRINSIC DBLE, MAX
  273. * ..
  274. * .. Executable Statements ..
  275. *
  276. * Decode and test the input parameters.
  277. *
  278. INFO = 0
  279. NB = ILAENV( 1, 'DGGHD3', ' ', N, ILO, IHI, -1 )
  280. LWKOPT = 6*N*NB
  281. WORK( 1 ) = DBLE( LWKOPT )
  282. INITQ = LSAME( COMPQ, 'I' )
  283. WANTQ = INITQ .OR. LSAME( COMPQ, 'V' )
  284. INITZ = LSAME( COMPZ, 'I' )
  285. WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
  286. LQUERY = ( LWORK.EQ.-1 )
  287. *
  288. IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
  289. INFO = -1
  290. ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
  291. INFO = -2
  292. ELSE IF( N.LT.0 ) THEN
  293. INFO = -3
  294. ELSE IF( ILO.LT.1 ) THEN
  295. INFO = -4
  296. ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
  297. INFO = -5
  298. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  299. INFO = -7
  300. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  301. INFO = -9
  302. ELSE IF( ( WANTQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
  303. INFO = -11
  304. ELSE IF( ( WANTZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
  305. INFO = -13
  306. ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
  307. INFO = -15
  308. END IF
  309. IF( INFO.NE.0 ) THEN
  310. CALL XERBLA( 'DGGHD3', -INFO )
  311. RETURN
  312. ELSE IF( LQUERY ) THEN
  313. RETURN
  314. END IF
  315. *
  316. * Initialize Q and Z if desired.
  317. *
  318. IF( INITQ )
  319. $ CALL DLASET( 'All', N, N, ZERO, ONE, Q, LDQ )
  320. IF( INITZ )
  321. $ CALL DLASET( 'All', N, N, ZERO, ONE, Z, LDZ )
  322. *
  323. * Zero out lower triangle of B.
  324. *
  325. IF( N.GT.1 )
  326. $ CALL DLASET( 'Lower', N-1, N-1, ZERO, ZERO, B(2, 1), LDB )
  327. *
  328. * Quick return if possible
  329. *
  330. NH = IHI - ILO + 1
  331. IF( NH.LE.1 ) THEN
  332. WORK( 1 ) = ONE
  333. RETURN
  334. END IF
  335. *
  336. * Determine the blocksize.
  337. *
  338. NBMIN = ILAENV( 2, 'DGGHD3', ' ', N, ILO, IHI, -1 )
  339. IF( NB.GT.1 .AND. NB.LT.NH ) THEN
  340. *
  341. * Determine when to use unblocked instead of blocked code.
  342. *
  343. NX = MAX( NB, ILAENV( 3, 'DGGHD3', ' ', N, ILO, IHI, -1 ) )
  344. IF( NX.LT.NH ) THEN
  345. *
  346. * Determine if workspace is large enough for blocked code.
  347. *
  348. IF( LWORK.LT.LWKOPT ) THEN
  349. *
  350. * Not enough workspace to use optimal NB: determine the
  351. * minimum value of NB, and reduce NB or force use of
  352. * unblocked code.
  353. *
  354. NBMIN = MAX( 2, ILAENV( 2, 'DGGHD3', ' ', N, ILO, IHI,
  355. $ -1 ) )
  356. IF( LWORK.GE.6*N*NBMIN ) THEN
  357. NB = LWORK / ( 6*N )
  358. ELSE
  359. NB = 1
  360. END IF
  361. END IF
  362. END IF
  363. END IF
  364. *
  365. IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
  366. *
  367. * Use unblocked code below
  368. *
  369. JCOL = ILO
  370. *
  371. ELSE
  372. *
  373. * Use blocked code
  374. *
  375. KACC22 = ILAENV( 16, 'DGGHD3', ' ', N, ILO, IHI, -1 )
  376. BLK22 = KACC22.EQ.2
  377. DO JCOL = ILO, IHI-2, NB
  378. NNB = MIN( NB, IHI-JCOL-1 )
  379. *
  380. * Initialize small orthogonal factors that will hold the
  381. * accumulated Givens rotations in workspace.
  382. * N2NB denotes the number of 2*NNB-by-2*NNB factors
  383. * NBLST denotes the (possibly smaller) order of the last
  384. * factor.
  385. *
  386. N2NB = ( IHI-JCOL-1 ) / NNB - 1
  387. NBLST = IHI - JCOL - N2NB*NNB
  388. CALL DLASET( 'All', NBLST, NBLST, ZERO, ONE, WORK, NBLST )
  389. PW = NBLST * NBLST + 1
  390. DO I = 1, N2NB
  391. CALL DLASET( 'All', 2*NNB, 2*NNB, ZERO, ONE,
  392. $ WORK( PW ), 2*NNB )
  393. PW = PW + 4*NNB*NNB
  394. END DO
  395. *
  396. * Reduce columns JCOL:JCOL+NNB-1 of A to Hessenberg form.
  397. *
  398. DO J = JCOL, JCOL+NNB-1
  399. *
  400. * Reduce Jth column of A. Store cosines and sines in Jth
  401. * column of A and B, respectively.
  402. *
  403. DO I = IHI, J+2, -1
  404. TEMP = A( I-1, J )
  405. CALL DLARTG( TEMP, A( I, J ), C, S, A( I-1, J ) )
  406. A( I, J ) = C
  407. B( I, J ) = S
  408. END DO
  409. *
  410. * Accumulate Givens rotations into workspace array.
  411. *
  412. PPW = ( NBLST + 1 )*( NBLST - 2 ) - J + JCOL + 1
  413. LEN = 2 + J - JCOL
  414. JROW = J + N2NB*NNB + 2
  415. DO I = IHI, JROW, -1
  416. C = A( I, J )
  417. S = B( I, J )
  418. DO JJ = PPW, PPW+LEN-1
  419. TEMP = WORK( JJ + NBLST )
  420. WORK( JJ + NBLST ) = C*TEMP - S*WORK( JJ )
  421. WORK( JJ ) = S*TEMP + C*WORK( JJ )
  422. END DO
  423. LEN = LEN + 1
  424. PPW = PPW - NBLST - 1
  425. END DO
  426. *
  427. PPWO = NBLST*NBLST + ( NNB+J-JCOL-1 )*2*NNB + NNB
  428. J0 = JROW - NNB
  429. DO JROW = J0, J+2, -NNB
  430. PPW = PPWO
  431. LEN = 2 + J - JCOL
  432. DO I = JROW+NNB-1, JROW, -1
  433. C = A( I, J )
  434. S = B( I, J )
  435. DO JJ = PPW, PPW+LEN-1
  436. TEMP = WORK( JJ + 2*NNB )
  437. WORK( JJ + 2*NNB ) = C*TEMP - S*WORK( JJ )
  438. WORK( JJ ) = S*TEMP + C*WORK( JJ )
  439. END DO
  440. LEN = LEN + 1
  441. PPW = PPW - 2*NNB - 1
  442. END DO
  443. PPWO = PPWO + 4*NNB*NNB
  444. END DO
  445. *
  446. * TOP denotes the number of top rows in A and B that will
  447. * not be updated during the next steps.
  448. *
  449. IF( JCOL.LE.2 ) THEN
  450. TOP = 0
  451. ELSE
  452. TOP = JCOL
  453. END IF
  454. *
  455. * Propagate transformations through B and replace stored
  456. * left sines/cosines by right sines/cosines.
  457. *
  458. DO JJ = N, J+1, -1
  459. *
  460. * Update JJth column of B.
  461. *
  462. DO I = MIN( JJ+1, IHI ), J+2, -1
  463. C = A( I, J )
  464. S = B( I, J )
  465. TEMP = B( I, JJ )
  466. B( I, JJ ) = C*TEMP - S*B( I-1, JJ )
  467. B( I-1, JJ ) = S*TEMP + C*B( I-1, JJ )
  468. END DO
  469. *
  470. * Annihilate B( JJ+1, JJ ).
  471. *
  472. IF( JJ.LT.IHI ) THEN
  473. TEMP = B( JJ+1, JJ+1 )
  474. CALL DLARTG( TEMP, B( JJ+1, JJ ), C, S,
  475. $ B( JJ+1, JJ+1 ) )
  476. B( JJ+1, JJ ) = ZERO
  477. CALL DROT( JJ-TOP, B( TOP+1, JJ+1 ), 1,
  478. $ B( TOP+1, JJ ), 1, C, S )
  479. A( JJ+1, J ) = C
  480. B( JJ+1, J ) = -S
  481. END IF
  482. END DO
  483. *
  484. * Update A by transformations from right.
  485. * Explicit loop unrolling provides better performance
  486. * compared to DLASR.
  487. * CALL DLASR( 'Right', 'Variable', 'Backward', IHI-TOP,
  488. * $ IHI-J, A( J+2, J ), B( J+2, J ),
  489. * $ A( TOP+1, J+1 ), LDA )
  490. *
  491. JJ = MOD( IHI-J-1, 3 )
  492. DO I = IHI-J-3, JJ+1, -3
  493. C = A( J+1+I, J )
  494. S = -B( J+1+I, J )
  495. C1 = A( J+2+I, J )
  496. S1 = -B( J+2+I, J )
  497. C2 = A( J+3+I, J )
  498. S2 = -B( J+3+I, J )
  499. *
  500. DO K = TOP+1, IHI
  501. TEMP = A( K, J+I )
  502. TEMP1 = A( K, J+I+1 )
  503. TEMP2 = A( K, J+I+2 )
  504. TEMP3 = A( K, J+I+3 )
  505. A( K, J+I+3 ) = C2*TEMP3 + S2*TEMP2
  506. TEMP2 = -S2*TEMP3 + C2*TEMP2
  507. A( K, J+I+2 ) = C1*TEMP2 + S1*TEMP1
  508. TEMP1 = -S1*TEMP2 + C1*TEMP1
  509. A( K, J+I+1 ) = C*TEMP1 + S*TEMP
  510. A( K, J+I ) = -S*TEMP1 + C*TEMP
  511. END DO
  512. END DO
  513. *
  514. IF( JJ.GT.0 ) THEN
  515. DO I = JJ, 1, -1
  516. CALL DROT( IHI-TOP, A( TOP+1, J+I+1 ), 1,
  517. $ A( TOP+1, J+I ), 1, A( J+1+I, J ),
  518. $ -B( J+1+I, J ) )
  519. END DO
  520. END IF
  521. *
  522. * Update (J+1)th column of A by transformations from left.
  523. *
  524. IF ( J .LT. JCOL + NNB - 1 ) THEN
  525. LEN = 1 + J - JCOL
  526. *
  527. * Multiply with the trailing accumulated orthogonal
  528. * matrix, which takes the form
  529. *
  530. * [ U11 U12 ]
  531. * U = [ ],
  532. * [ U21 U22 ]
  533. *
  534. * where U21 is a LEN-by-LEN matrix and U12 is lower
  535. * triangular.
  536. *
  537. JROW = IHI - NBLST + 1
  538. CALL DGEMV( 'Transpose', NBLST, LEN, ONE, WORK,
  539. $ NBLST, A( JROW, J+1 ), 1, ZERO,
  540. $ WORK( PW ), 1 )
  541. PPW = PW + LEN
  542. DO I = JROW, JROW+NBLST-LEN-1
  543. WORK( PPW ) = A( I, J+1 )
  544. PPW = PPW + 1
  545. END DO
  546. CALL DTRMV( 'Lower', 'Transpose', 'Non-unit',
  547. $ NBLST-LEN, WORK( LEN*NBLST + 1 ), NBLST,
  548. $ WORK( PW+LEN ), 1 )
  549. CALL DGEMV( 'Transpose', LEN, NBLST-LEN, ONE,
  550. $ WORK( (LEN+1)*NBLST - LEN + 1 ), NBLST,
  551. $ A( JROW+NBLST-LEN, J+1 ), 1, ONE,
  552. $ WORK( PW+LEN ), 1 )
  553. PPW = PW
  554. DO I = JROW, JROW+NBLST-1
  555. A( I, J+1 ) = WORK( PPW )
  556. PPW = PPW + 1
  557. END DO
  558. *
  559. * Multiply with the other accumulated orthogonal
  560. * matrices, which take the form
  561. *
  562. * [ U11 U12 0 ]
  563. * [ ]
  564. * U = [ U21 U22 0 ],
  565. * [ ]
  566. * [ 0 0 I ]
  567. *
  568. * where I denotes the (NNB-LEN)-by-(NNB-LEN) identity
  569. * matrix, U21 is a LEN-by-LEN upper triangular matrix
  570. * and U12 is an NNB-by-NNB lower triangular matrix.
  571. *
  572. PPWO = 1 + NBLST*NBLST
  573. J0 = JROW - NNB
  574. DO JROW = J0, JCOL+1, -NNB
  575. PPW = PW + LEN
  576. DO I = JROW, JROW+NNB-1
  577. WORK( PPW ) = A( I, J+1 )
  578. PPW = PPW + 1
  579. END DO
  580. PPW = PW
  581. DO I = JROW+NNB, JROW+NNB+LEN-1
  582. WORK( PPW ) = A( I, J+1 )
  583. PPW = PPW + 1
  584. END DO
  585. CALL DTRMV( 'Upper', 'Transpose', 'Non-unit', LEN,
  586. $ WORK( PPWO + NNB ), 2*NNB, WORK( PW ),
  587. $ 1 )
  588. CALL DTRMV( 'Lower', 'Transpose', 'Non-unit', NNB,
  589. $ WORK( PPWO + 2*LEN*NNB ),
  590. $ 2*NNB, WORK( PW + LEN ), 1 )
  591. CALL DGEMV( 'Transpose', NNB, LEN, ONE,
  592. $ WORK( PPWO ), 2*NNB, A( JROW, J+1 ), 1,
  593. $ ONE, WORK( PW ), 1 )
  594. CALL DGEMV( 'Transpose', LEN, NNB, ONE,
  595. $ WORK( PPWO + 2*LEN*NNB + NNB ), 2*NNB,
  596. $ A( JROW+NNB, J+1 ), 1, ONE,
  597. $ WORK( PW+LEN ), 1 )
  598. PPW = PW
  599. DO I = JROW, JROW+LEN+NNB-1
  600. A( I, J+1 ) = WORK( PPW )
  601. PPW = PPW + 1
  602. END DO
  603. PPWO = PPWO + 4*NNB*NNB
  604. END DO
  605. END IF
  606. END DO
  607. *
  608. * Apply accumulated orthogonal matrices to A.
  609. *
  610. COLA = N - JCOL - NNB + 1
  611. J = IHI - NBLST + 1
  612. CALL DGEMM( 'Transpose', 'No Transpose', NBLST,
  613. $ COLA, NBLST, ONE, WORK, NBLST,
  614. $ A( J, JCOL+NNB ), LDA, ZERO, WORK( PW ),
  615. $ NBLST )
  616. CALL DLACPY( 'All', NBLST, COLA, WORK( PW ), NBLST,
  617. $ A( J, JCOL+NNB ), LDA )
  618. PPWO = NBLST*NBLST + 1
  619. J0 = J - NNB
  620. DO J = J0, JCOL+1, -NNB
  621. IF ( BLK22 ) THEN
  622. *
  623. * Exploit the structure of
  624. *
  625. * [ U11 U12 ]
  626. * U = [ ]
  627. * [ U21 U22 ],
  628. *
  629. * where all blocks are NNB-by-NNB, U21 is upper
  630. * triangular and U12 is lower triangular.
  631. *
  632. CALL DORM22( 'Left', 'Transpose', 2*NNB, COLA, NNB,
  633. $ NNB, WORK( PPWO ), 2*NNB,
  634. $ A( J, JCOL+NNB ), LDA, WORK( PW ),
  635. $ LWORK-PW+1, IERR )
  636. ELSE
  637. *
  638. * Ignore the structure of U.
  639. *
  640. CALL DGEMM( 'Transpose', 'No Transpose', 2*NNB,
  641. $ COLA, 2*NNB, ONE, WORK( PPWO ), 2*NNB,
  642. $ A( J, JCOL+NNB ), LDA, ZERO, WORK( PW ),
  643. $ 2*NNB )
  644. CALL DLACPY( 'All', 2*NNB, COLA, WORK( PW ), 2*NNB,
  645. $ A( J, JCOL+NNB ), LDA )
  646. END IF
  647. PPWO = PPWO + 4*NNB*NNB
  648. END DO
  649. *
  650. * Apply accumulated orthogonal matrices to Q.
  651. *
  652. IF( WANTQ ) THEN
  653. J = IHI - NBLST + 1
  654. IF ( INITQ ) THEN
  655. TOPQ = MAX( 2, J - JCOL + 1 )
  656. NH = IHI - TOPQ + 1
  657. ELSE
  658. TOPQ = 1
  659. NH = N
  660. END IF
  661. CALL DGEMM( 'No Transpose', 'No Transpose', NH,
  662. $ NBLST, NBLST, ONE, Q( TOPQ, J ), LDQ,
  663. $ WORK, NBLST, ZERO, WORK( PW ), NH )
  664. CALL DLACPY( 'All', NH, NBLST, WORK( PW ), NH,
  665. $ Q( TOPQ, J ), LDQ )
  666. PPWO = NBLST*NBLST + 1
  667. J0 = J - NNB
  668. DO J = J0, JCOL+1, -NNB
  669. IF ( INITQ ) THEN
  670. TOPQ = MAX( 2, J - JCOL + 1 )
  671. NH = IHI - TOPQ + 1
  672. END IF
  673. IF ( BLK22 ) THEN
  674. *
  675. * Exploit the structure of U.
  676. *
  677. CALL DORM22( 'Right', 'No Transpose', NH, 2*NNB,
  678. $ NNB, NNB, WORK( PPWO ), 2*NNB,
  679. $ Q( TOPQ, J ), LDQ, WORK( PW ),
  680. $ LWORK-PW+1, IERR )
  681. ELSE
  682. *
  683. * Ignore the structure of U.
  684. *
  685. CALL DGEMM( 'No Transpose', 'No Transpose', NH,
  686. $ 2*NNB, 2*NNB, ONE, Q( TOPQ, J ), LDQ,
  687. $ WORK( PPWO ), 2*NNB, ZERO, WORK( PW ),
  688. $ NH )
  689. CALL DLACPY( 'All', NH, 2*NNB, WORK( PW ), NH,
  690. $ Q( TOPQ, J ), LDQ )
  691. END IF
  692. PPWO = PPWO + 4*NNB*NNB
  693. END DO
  694. END IF
  695. *
  696. * Accumulate right Givens rotations if required.
  697. *
  698. IF ( WANTZ .OR. TOP.GT.0 ) THEN
  699. *
  700. * Initialize small orthogonal factors that will hold the
  701. * accumulated Givens rotations in workspace.
  702. *
  703. CALL DLASET( 'All', NBLST, NBLST, ZERO, ONE, WORK,
  704. $ NBLST )
  705. PW = NBLST * NBLST + 1
  706. DO I = 1, N2NB
  707. CALL DLASET( 'All', 2*NNB, 2*NNB, ZERO, ONE,
  708. $ WORK( PW ), 2*NNB )
  709. PW = PW + 4*NNB*NNB
  710. END DO
  711. *
  712. * Accumulate Givens rotations into workspace array.
  713. *
  714. DO J = JCOL, JCOL+NNB-1
  715. PPW = ( NBLST + 1 )*( NBLST - 2 ) - J + JCOL + 1
  716. LEN = 2 + J - JCOL
  717. JROW = J + N2NB*NNB + 2
  718. DO I = IHI, JROW, -1
  719. C = A( I, J )
  720. A( I, J ) = ZERO
  721. S = B( I, J )
  722. B( I, J ) = ZERO
  723. DO JJ = PPW, PPW+LEN-1
  724. TEMP = WORK( JJ + NBLST )
  725. WORK( JJ + NBLST ) = C*TEMP - S*WORK( JJ )
  726. WORK( JJ ) = S*TEMP + C*WORK( JJ )
  727. END DO
  728. LEN = LEN + 1
  729. PPW = PPW - NBLST - 1
  730. END DO
  731. *
  732. PPWO = NBLST*NBLST + ( NNB+J-JCOL-1 )*2*NNB + NNB
  733. J0 = JROW - NNB
  734. DO JROW = J0, J+2, -NNB
  735. PPW = PPWO
  736. LEN = 2 + J - JCOL
  737. DO I = JROW+NNB-1, JROW, -1
  738. C = A( I, J )
  739. A( I, J ) = ZERO
  740. S = B( I, J )
  741. B( I, J ) = ZERO
  742. DO JJ = PPW, PPW+LEN-1
  743. TEMP = WORK( JJ + 2*NNB )
  744. WORK( JJ + 2*NNB ) = C*TEMP - S*WORK( JJ )
  745. WORK( JJ ) = S*TEMP + C*WORK( JJ )
  746. END DO
  747. LEN = LEN + 1
  748. PPW = PPW - 2*NNB - 1
  749. END DO
  750. PPWO = PPWO + 4*NNB*NNB
  751. END DO
  752. END DO
  753. ELSE
  754. *
  755. CALL DLASET( 'Lower', IHI - JCOL - 1, NNB, ZERO, ZERO,
  756. $ A( JCOL + 2, JCOL ), LDA )
  757. CALL DLASET( 'Lower', IHI - JCOL - 1, NNB, ZERO, ZERO,
  758. $ B( JCOL + 2, JCOL ), LDB )
  759. END IF
  760. *
  761. * Apply accumulated orthogonal matrices to A and B.
  762. *
  763. IF ( TOP.GT.0 ) THEN
  764. J = IHI - NBLST + 1
  765. CALL DGEMM( 'No Transpose', 'No Transpose', TOP,
  766. $ NBLST, NBLST, ONE, A( 1, J ), LDA,
  767. $ WORK, NBLST, ZERO, WORK( PW ), TOP )
  768. CALL DLACPY( 'All', TOP, NBLST, WORK( PW ), TOP,
  769. $ A( 1, J ), LDA )
  770. PPWO = NBLST*NBLST + 1
  771. J0 = J - NNB
  772. DO J = J0, JCOL+1, -NNB
  773. IF ( BLK22 ) THEN
  774. *
  775. * Exploit the structure of U.
  776. *
  777. CALL DORM22( 'Right', 'No Transpose', TOP, 2*NNB,
  778. $ NNB, NNB, WORK( PPWO ), 2*NNB,
  779. $ A( 1, J ), LDA, WORK( PW ),
  780. $ LWORK-PW+1, IERR )
  781. ELSE
  782. *
  783. * Ignore the structure of U.
  784. *
  785. CALL DGEMM( 'No Transpose', 'No Transpose', TOP,
  786. $ 2*NNB, 2*NNB, ONE, A( 1, J ), LDA,
  787. $ WORK( PPWO ), 2*NNB, ZERO,
  788. $ WORK( PW ), TOP )
  789. CALL DLACPY( 'All', TOP, 2*NNB, WORK( PW ), TOP,
  790. $ A( 1, J ), LDA )
  791. END IF
  792. PPWO = PPWO + 4*NNB*NNB
  793. END DO
  794. *
  795. J = IHI - NBLST + 1
  796. CALL DGEMM( 'No Transpose', 'No Transpose', TOP,
  797. $ NBLST, NBLST, ONE, B( 1, J ), LDB,
  798. $ WORK, NBLST, ZERO, WORK( PW ), TOP )
  799. CALL DLACPY( 'All', TOP, NBLST, WORK( PW ), TOP,
  800. $ B( 1, J ), LDB )
  801. PPWO = NBLST*NBLST + 1
  802. J0 = J - NNB
  803. DO J = J0, JCOL+1, -NNB
  804. IF ( BLK22 ) THEN
  805. *
  806. * Exploit the structure of U.
  807. *
  808. CALL DORM22( 'Right', 'No Transpose', TOP, 2*NNB,
  809. $ NNB, NNB, WORK( PPWO ), 2*NNB,
  810. $ B( 1, J ), LDB, WORK( PW ),
  811. $ LWORK-PW+1, IERR )
  812. ELSE
  813. *
  814. * Ignore the structure of U.
  815. *
  816. CALL DGEMM( 'No Transpose', 'No Transpose', TOP,
  817. $ 2*NNB, 2*NNB, ONE, B( 1, J ), LDB,
  818. $ WORK( PPWO ), 2*NNB, ZERO,
  819. $ WORK( PW ), TOP )
  820. CALL DLACPY( 'All', TOP, 2*NNB, WORK( PW ), TOP,
  821. $ B( 1, J ), LDB )
  822. END IF
  823. PPWO = PPWO + 4*NNB*NNB
  824. END DO
  825. END IF
  826. *
  827. * Apply accumulated orthogonal matrices to Z.
  828. *
  829. IF( WANTZ ) THEN
  830. J = IHI - NBLST + 1
  831. IF ( INITQ ) THEN
  832. TOPQ = MAX( 2, J - JCOL + 1 )
  833. NH = IHI - TOPQ + 1
  834. ELSE
  835. TOPQ = 1
  836. NH = N
  837. END IF
  838. CALL DGEMM( 'No Transpose', 'No Transpose', NH,
  839. $ NBLST, NBLST, ONE, Z( TOPQ, J ), LDZ,
  840. $ WORK, NBLST, ZERO, WORK( PW ), NH )
  841. CALL DLACPY( 'All', NH, NBLST, WORK( PW ), NH,
  842. $ Z( TOPQ, J ), LDZ )
  843. PPWO = NBLST*NBLST + 1
  844. J0 = J - NNB
  845. DO J = J0, JCOL+1, -NNB
  846. IF ( INITQ ) THEN
  847. TOPQ = MAX( 2, J - JCOL + 1 )
  848. NH = IHI - TOPQ + 1
  849. END IF
  850. IF ( BLK22 ) THEN
  851. *
  852. * Exploit the structure of U.
  853. *
  854. CALL DORM22( 'Right', 'No Transpose', NH, 2*NNB,
  855. $ NNB, NNB, WORK( PPWO ), 2*NNB,
  856. $ Z( TOPQ, J ), LDZ, WORK( PW ),
  857. $ LWORK-PW+1, IERR )
  858. ELSE
  859. *
  860. * Ignore the structure of U.
  861. *
  862. CALL DGEMM( 'No Transpose', 'No Transpose', NH,
  863. $ 2*NNB, 2*NNB, ONE, Z( TOPQ, J ), LDZ,
  864. $ WORK( PPWO ), 2*NNB, ZERO, WORK( PW ),
  865. $ NH )
  866. CALL DLACPY( 'All', NH, 2*NNB, WORK( PW ), NH,
  867. $ Z( TOPQ, J ), LDZ )
  868. END IF
  869. PPWO = PPWO + 4*NNB*NNB
  870. END DO
  871. END IF
  872. END DO
  873. END IF
  874. *
  875. * Use unblocked code to reduce the rest of the matrix
  876. * Avoid re-initialization of modified Q and Z.
  877. *
  878. COMPQ2 = COMPQ
  879. COMPZ2 = COMPZ
  880. IF ( JCOL.NE.ILO ) THEN
  881. IF ( WANTQ )
  882. $ COMPQ2 = 'V'
  883. IF ( WANTZ )
  884. $ COMPZ2 = 'V'
  885. END IF
  886. *
  887. IF ( JCOL.LT.IHI )
  888. $ CALL DGGHRD( COMPQ2, COMPZ2, N, JCOL, IHI, A, LDA, B, LDB, Q,
  889. $ LDQ, Z, LDZ, IERR )
  890. WORK( 1 ) = DBLE( LWKOPT )
  891. *
  892. RETURN
  893. *
  894. * End of DGGHD3
  895. *
  896. END