You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sggsvp.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522
  1. *> \brief \b SGGSVP
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SGGSVP + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggsvp.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggsvp.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggsvp.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
  22. * TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
  23. * IWORK, TAU, WORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBQ, JOBU, JOBV
  27. * INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
  28. * REAL TOLA, TOLB
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IWORK( * )
  32. * REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  33. * $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> This routine is deprecated and has been replaced by routine SGGSVP3.
  43. *>
  44. *> SGGSVP computes orthogonal matrices U, V and Q such that
  45. *>
  46. *> N-K-L K L
  47. *> U**T*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0;
  48. *> L ( 0 0 A23 )
  49. *> M-K-L ( 0 0 0 )
  50. *>
  51. *> N-K-L K L
  52. *> = K ( 0 A12 A13 ) if M-K-L < 0;
  53. *> M-K ( 0 0 A23 )
  54. *>
  55. *> N-K-L K L
  56. *> V**T*B*Q = L ( 0 0 B13 )
  57. *> P-L ( 0 0 0 )
  58. *>
  59. *> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
  60. *> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
  61. *> otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
  62. *> numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T.
  63. *>
  64. *> This decomposition is the preprocessing step for computing the
  65. *> Generalized Singular Value Decomposition (GSVD), see subroutine
  66. *> SGGSVD.
  67. *> \endverbatim
  68. *
  69. * Arguments:
  70. * ==========
  71. *
  72. *> \param[in] JOBU
  73. *> \verbatim
  74. *> JOBU is CHARACTER*1
  75. *> = 'U': Orthogonal matrix U is computed;
  76. *> = 'N': U is not computed.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] JOBV
  80. *> \verbatim
  81. *> JOBV is CHARACTER*1
  82. *> = 'V': Orthogonal matrix V is computed;
  83. *> = 'N': V is not computed.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] JOBQ
  87. *> \verbatim
  88. *> JOBQ is CHARACTER*1
  89. *> = 'Q': Orthogonal matrix Q is computed;
  90. *> = 'N': Q is not computed.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] M
  94. *> \verbatim
  95. *> M is INTEGER
  96. *> The number of rows of the matrix A. M >= 0.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] P
  100. *> \verbatim
  101. *> P is INTEGER
  102. *> The number of rows of the matrix B. P >= 0.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] N
  106. *> \verbatim
  107. *> N is INTEGER
  108. *> The number of columns of the matrices A and B. N >= 0.
  109. *> \endverbatim
  110. *>
  111. *> \param[in,out] A
  112. *> \verbatim
  113. *> A is REAL array, dimension (LDA,N)
  114. *> On entry, the M-by-N matrix A.
  115. *> On exit, A contains the triangular (or trapezoidal) matrix
  116. *> described in the Purpose section.
  117. *> \endverbatim
  118. *>
  119. *> \param[in] LDA
  120. *> \verbatim
  121. *> LDA is INTEGER
  122. *> The leading dimension of the array A. LDA >= max(1,M).
  123. *> \endverbatim
  124. *>
  125. *> \param[in,out] B
  126. *> \verbatim
  127. *> B is REAL array, dimension (LDB,N)
  128. *> On entry, the P-by-N matrix B.
  129. *> On exit, B contains the triangular matrix described in
  130. *> the Purpose section.
  131. *> \endverbatim
  132. *>
  133. *> \param[in] LDB
  134. *> \verbatim
  135. *> LDB is INTEGER
  136. *> The leading dimension of the array B. LDB >= max(1,P).
  137. *> \endverbatim
  138. *>
  139. *> \param[in] TOLA
  140. *> \verbatim
  141. *> TOLA is REAL
  142. *> \endverbatim
  143. *>
  144. *> \param[in] TOLB
  145. *> \verbatim
  146. *> TOLB is REAL
  147. *>
  148. *> TOLA and TOLB are the thresholds to determine the effective
  149. *> numerical rank of matrix B and a subblock of A. Generally,
  150. *> they are set to
  151. *> TOLA = MAX(M,N)*norm(A)*MACHEPS,
  152. *> TOLB = MAX(P,N)*norm(B)*MACHEPS.
  153. *> The size of TOLA and TOLB may affect the size of backward
  154. *> errors of the decomposition.
  155. *> \endverbatim
  156. *>
  157. *> \param[out] K
  158. *> \verbatim
  159. *> K is INTEGER
  160. *> \endverbatim
  161. *>
  162. *> \param[out] L
  163. *> \verbatim
  164. *> L is INTEGER
  165. *>
  166. *> On exit, K and L specify the dimension of the subblocks
  167. *> described in Purpose section.
  168. *> K + L = effective numerical rank of (A**T,B**T)**T.
  169. *> \endverbatim
  170. *>
  171. *> \param[out] U
  172. *> \verbatim
  173. *> U is REAL array, dimension (LDU,M)
  174. *> If JOBU = 'U', U contains the orthogonal matrix U.
  175. *> If JOBU = 'N', U is not referenced.
  176. *> \endverbatim
  177. *>
  178. *> \param[in] LDU
  179. *> \verbatim
  180. *> LDU is INTEGER
  181. *> The leading dimension of the array U. LDU >= max(1,M) if
  182. *> JOBU = 'U'; LDU >= 1 otherwise.
  183. *> \endverbatim
  184. *>
  185. *> \param[out] V
  186. *> \verbatim
  187. *> V is REAL array, dimension (LDV,P)
  188. *> If JOBV = 'V', V contains the orthogonal matrix V.
  189. *> If JOBV = 'N', V is not referenced.
  190. *> \endverbatim
  191. *>
  192. *> \param[in] LDV
  193. *> \verbatim
  194. *> LDV is INTEGER
  195. *> The leading dimension of the array V. LDV >= max(1,P) if
  196. *> JOBV = 'V'; LDV >= 1 otherwise.
  197. *> \endverbatim
  198. *>
  199. *> \param[out] Q
  200. *> \verbatim
  201. *> Q is REAL array, dimension (LDQ,N)
  202. *> If JOBQ = 'Q', Q contains the orthogonal matrix Q.
  203. *> If JOBQ = 'N', Q is not referenced.
  204. *> \endverbatim
  205. *>
  206. *> \param[in] LDQ
  207. *> \verbatim
  208. *> LDQ is INTEGER
  209. *> The leading dimension of the array Q. LDQ >= max(1,N) if
  210. *> JOBQ = 'Q'; LDQ >= 1 otherwise.
  211. *> \endverbatim
  212. *>
  213. *> \param[out] IWORK
  214. *> \verbatim
  215. *> IWORK is INTEGER array, dimension (N)
  216. *> \endverbatim
  217. *>
  218. *> \param[out] TAU
  219. *> \verbatim
  220. *> TAU is REAL array, dimension (N)
  221. *> \endverbatim
  222. *>
  223. *> \param[out] WORK
  224. *> \verbatim
  225. *> WORK is REAL array, dimension (max(3*N,M,P))
  226. *> \endverbatim
  227. *>
  228. *> \param[out] INFO
  229. *> \verbatim
  230. *> INFO is INTEGER
  231. *> = 0: successful exit
  232. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  233. *> \endverbatim
  234. *
  235. * Authors:
  236. * ========
  237. *
  238. *> \author Univ. of Tennessee
  239. *> \author Univ. of California Berkeley
  240. *> \author Univ. of Colorado Denver
  241. *> \author NAG Ltd.
  242. *
  243. *> \date November 2011
  244. *
  245. *> \ingroup realOTHERcomputational
  246. *
  247. *> \par Further Details:
  248. * =====================
  249. *>
  250. *> The subroutine uses LAPACK subroutine SGEQPF for the QR factorization
  251. *> with column pivoting to detect the effective numerical rank of the
  252. *> a matrix. It may be replaced by a better rank determination strategy.
  253. *>
  254. * =====================================================================
  255. SUBROUTINE SGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
  256. $ TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
  257. $ IWORK, TAU, WORK, INFO )
  258. *
  259. * -- LAPACK computational routine (version 3.4.0) --
  260. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  261. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  262. * November 2011
  263. *
  264. * .. Scalar Arguments ..
  265. CHARACTER JOBQ, JOBU, JOBV
  266. INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
  267. REAL TOLA, TOLB
  268. * ..
  269. * .. Array Arguments ..
  270. INTEGER IWORK( * )
  271. REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  272. $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
  273. * ..
  274. *
  275. * =====================================================================
  276. *
  277. * .. Parameters ..
  278. REAL ZERO, ONE
  279. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  280. * ..
  281. * .. Local Scalars ..
  282. LOGICAL FORWRD, WANTQ, WANTU, WANTV
  283. INTEGER I, J
  284. * ..
  285. * .. External Functions ..
  286. LOGICAL LSAME
  287. EXTERNAL LSAME
  288. * ..
  289. * .. External Subroutines ..
  290. EXTERNAL SGEQPF, SGEQR2, SGERQ2, SLACPY, SLAPMT, SLASET,
  291. $ SORG2R, SORM2R, SORMR2, XERBLA
  292. * ..
  293. * .. Intrinsic Functions ..
  294. INTRINSIC ABS, MAX, MIN
  295. * ..
  296. * .. Executable Statements ..
  297. *
  298. * Test the input parameters
  299. *
  300. WANTU = LSAME( JOBU, 'U' )
  301. WANTV = LSAME( JOBV, 'V' )
  302. WANTQ = LSAME( JOBQ, 'Q' )
  303. FORWRD = .TRUE.
  304. *
  305. INFO = 0
  306. IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
  307. INFO = -1
  308. ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
  309. INFO = -2
  310. ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
  311. INFO = -3
  312. ELSE IF( M.LT.0 ) THEN
  313. INFO = -4
  314. ELSE IF( P.LT.0 ) THEN
  315. INFO = -5
  316. ELSE IF( N.LT.0 ) THEN
  317. INFO = -6
  318. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  319. INFO = -8
  320. ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  321. INFO = -10
  322. ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
  323. INFO = -16
  324. ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
  325. INFO = -18
  326. ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  327. INFO = -20
  328. END IF
  329. IF( INFO.NE.0 ) THEN
  330. CALL XERBLA( 'SGGSVP', -INFO )
  331. RETURN
  332. END IF
  333. *
  334. * QR with column pivoting of B: B*P = V*( S11 S12 )
  335. * ( 0 0 )
  336. *
  337. DO 10 I = 1, N
  338. IWORK( I ) = 0
  339. 10 CONTINUE
  340. CALL SGEQPF( P, N, B, LDB, IWORK, TAU, WORK, INFO )
  341. *
  342. * Update A := A*P
  343. *
  344. CALL SLAPMT( FORWRD, M, N, A, LDA, IWORK )
  345. *
  346. * Determine the effective rank of matrix B.
  347. *
  348. L = 0
  349. DO 20 I = 1, MIN( P, N )
  350. IF( ABS( B( I, I ) ).GT.TOLB )
  351. $ L = L + 1
  352. 20 CONTINUE
  353. *
  354. IF( WANTV ) THEN
  355. *
  356. * Copy the details of V, and form V.
  357. *
  358. CALL SLASET( 'Full', P, P, ZERO, ZERO, V, LDV )
  359. IF( P.GT.1 )
  360. $ CALL SLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
  361. $ LDV )
  362. CALL SORG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
  363. END IF
  364. *
  365. * Clean up B
  366. *
  367. DO 40 J = 1, L - 1
  368. DO 30 I = J + 1, L
  369. B( I, J ) = ZERO
  370. 30 CONTINUE
  371. 40 CONTINUE
  372. IF( P.GT.L )
  373. $ CALL SLASET( 'Full', P-L, N, ZERO, ZERO, B( L+1, 1 ), LDB )
  374. *
  375. IF( WANTQ ) THEN
  376. *
  377. * Set Q = I and Update Q := Q*P
  378. *
  379. CALL SLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
  380. CALL SLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
  381. END IF
  382. *
  383. IF( P.GE.L .AND. N.NE.L ) THEN
  384. *
  385. * RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z
  386. *
  387. CALL SGERQ2( L, N, B, LDB, TAU, WORK, INFO )
  388. *
  389. * Update A := A*Z**T
  390. *
  391. CALL SORMR2( 'Right', 'Transpose', M, N, L, B, LDB, TAU, A,
  392. $ LDA, WORK, INFO )
  393. *
  394. IF( WANTQ ) THEN
  395. *
  396. * Update Q := Q*Z**T
  397. *
  398. CALL SORMR2( 'Right', 'Transpose', N, N, L, B, LDB, TAU, Q,
  399. $ LDQ, WORK, INFO )
  400. END IF
  401. *
  402. * Clean up B
  403. *
  404. CALL SLASET( 'Full', L, N-L, ZERO, ZERO, B, LDB )
  405. DO 60 J = N - L + 1, N
  406. DO 50 I = J - N + L + 1, L
  407. B( I, J ) = ZERO
  408. 50 CONTINUE
  409. 60 CONTINUE
  410. *
  411. END IF
  412. *
  413. * Let N-L L
  414. * A = ( A11 A12 ) M,
  415. *
  416. * then the following does the complete QR decomposition of A11:
  417. *
  418. * A11 = U*( 0 T12 )*P1**T
  419. * ( 0 0 )
  420. *
  421. DO 70 I = 1, N - L
  422. IWORK( I ) = 0
  423. 70 CONTINUE
  424. CALL SGEQPF( M, N-L, A, LDA, IWORK, TAU, WORK, INFO )
  425. *
  426. * Determine the effective rank of A11
  427. *
  428. K = 0
  429. DO 80 I = 1, MIN( M, N-L )
  430. IF( ABS( A( I, I ) ).GT.TOLA )
  431. $ K = K + 1
  432. 80 CONTINUE
  433. *
  434. * Update A12 := U**T*A12, where A12 = A( 1:M, N-L+1:N )
  435. *
  436. CALL SORM2R( 'Left', 'Transpose', M, L, MIN( M, N-L ), A, LDA,
  437. $ TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
  438. *
  439. IF( WANTU ) THEN
  440. *
  441. * Copy the details of U, and form U
  442. *
  443. CALL SLASET( 'Full', M, M, ZERO, ZERO, U, LDU )
  444. IF( M.GT.1 )
  445. $ CALL SLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
  446. $ LDU )
  447. CALL SORG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
  448. END IF
  449. *
  450. IF( WANTQ ) THEN
  451. *
  452. * Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1
  453. *
  454. CALL SLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
  455. END IF
  456. *
  457. * Clean up A: set the strictly lower triangular part of
  458. * A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
  459. *
  460. DO 100 J = 1, K - 1
  461. DO 90 I = J + 1, K
  462. A( I, J ) = ZERO
  463. 90 CONTINUE
  464. 100 CONTINUE
  465. IF( M.GT.K )
  466. $ CALL SLASET( 'Full', M-K, N-L, ZERO, ZERO, A( K+1, 1 ), LDA )
  467. *
  468. IF( N-L.GT.K ) THEN
  469. *
  470. * RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
  471. *
  472. CALL SGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
  473. *
  474. IF( WANTQ ) THEN
  475. *
  476. * Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**T
  477. *
  478. CALL SORMR2( 'Right', 'Transpose', N, N-L, K, A, LDA, TAU,
  479. $ Q, LDQ, WORK, INFO )
  480. END IF
  481. *
  482. * Clean up A
  483. *
  484. CALL SLASET( 'Full', K, N-L-K, ZERO, ZERO, A, LDA )
  485. DO 120 J = N - L - K + 1, N - L
  486. DO 110 I = J - N + L + K + 1, K
  487. A( I, J ) = ZERO
  488. 110 CONTINUE
  489. 120 CONTINUE
  490. *
  491. END IF
  492. *
  493. IF( M.GT.K ) THEN
  494. *
  495. * QR factorization of A( K+1:M,N-L+1:N )
  496. *
  497. CALL SGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
  498. *
  499. IF( WANTU ) THEN
  500. *
  501. * Update U(:,K+1:M) := U(:,K+1:M)*U1
  502. *
  503. CALL SORM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
  504. $ A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
  505. $ WORK, INFO )
  506. END IF
  507. *
  508. * Clean up
  509. *
  510. DO 140 J = N - L + 1, N
  511. DO 130 I = J - N + K + L + 1, M
  512. A( I, J ) = ZERO
  513. 130 CONTINUE
  514. 140 CONTINUE
  515. *
  516. END IF
  517. *
  518. RETURN
  519. *
  520. * End of SGGSVP
  521. *
  522. END