You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsytrf_aa.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465
  1. *> \brief \b ZSYTRF_AA
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZSYTRF_AA + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrf_aa.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrf_aa.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrf_aa.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER N, LDA, LWORK, INFO
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 A( LDA, * ), WORK( * )
  30. * ..
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> ZSYTRF_AA computes the factorization of a complex symmetric matrix A
  38. *> using the Aasen's algorithm. The form of the factorization is
  39. *>
  40. *> A = U**T*T*U or A = L*T*L**T
  41. *>
  42. *> where U (or L) is a product of permutation and unit upper (lower)
  43. *> triangular matrices, and T is a complex symmetric tridiagonal matrix.
  44. *>
  45. *> This is the blocked version of the algorithm, calling Level 3 BLAS.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': Upper triangle of A is stored;
  55. *> = 'L': Lower triangle of A is stored.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] A
  65. *> \verbatim
  66. *> A is COMPLEX*16 array, dimension (LDA,N)
  67. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  68. *> N-by-N upper triangular part of A contains the upper
  69. *> triangular part of the matrix A, and the strictly lower
  70. *> triangular part of A is not referenced. If UPLO = 'L', the
  71. *> leading N-by-N lower triangular part of A contains the lower
  72. *> triangular part of the matrix A, and the strictly upper
  73. *> triangular part of A is not referenced.
  74. *>
  75. *> On exit, the tridiagonal matrix is stored in the diagonals
  76. *> and the subdiagonals of A just below (or above) the diagonals,
  77. *> and L is stored below (or above) the subdiaonals, when UPLO
  78. *> is 'L' (or 'U').
  79. *> \endverbatim
  80. *>
  81. *> \param[in] LDA
  82. *> \verbatim
  83. *> LDA is INTEGER
  84. *> The leading dimension of the array A. LDA >= max(1,N).
  85. *> \endverbatim
  86. *>
  87. *> \param[out] IPIV
  88. *> \verbatim
  89. *> IPIV is INTEGER array, dimension (N)
  90. *> On exit, it contains the details of the interchanges, i.e.,
  91. *> the row and column k of A were interchanged with the
  92. *> row and column IPIV(k).
  93. *> \endverbatim
  94. *>
  95. *> \param[out] WORK
  96. *> \verbatim
  97. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  98. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LWORK
  102. *> \verbatim
  103. *> LWORK is INTEGER
  104. *> The length of WORK. LWORK >=MAX(1,2*N). For optimum performance
  105. *> LWORK >= N*(1+NB), where NB is the optimal blocksize.
  106. *>
  107. *> If LWORK = -1, then a workspace query is assumed; the routine
  108. *> only calculates the optimal size of the WORK array, returns
  109. *> this value as the first entry of the WORK array, and no error
  110. *> message related to LWORK is issued by XERBLA.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] INFO
  114. *> \verbatim
  115. *> INFO is INTEGER
  116. *> = 0: successful exit
  117. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  118. *> \endverbatim
  119. *
  120. * Authors:
  121. * ========
  122. *
  123. *> \author Univ. of Tennessee
  124. *> \author Univ. of California Berkeley
  125. *> \author Univ. of Colorado Denver
  126. *> \author NAG Ltd.
  127. *
  128. *> \ingroup complex16SYcomputational
  129. *
  130. * =====================================================================
  131. SUBROUTINE ZSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
  132. *
  133. * -- LAPACK computational routine --
  134. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  135. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  136. *
  137. IMPLICIT NONE
  138. *
  139. * .. Scalar Arguments ..
  140. CHARACTER UPLO
  141. INTEGER N, LDA, LWORK, INFO
  142. * ..
  143. * .. Array Arguments ..
  144. INTEGER IPIV( * )
  145. COMPLEX*16 A( LDA, * ), WORK( * )
  146. * ..
  147. *
  148. * =====================================================================
  149. * .. Parameters ..
  150. COMPLEX*16 ZERO, ONE
  151. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  152. *
  153. * .. Local Scalars ..
  154. LOGICAL LQUERY, UPPER
  155. INTEGER J, LWKOPT
  156. INTEGER NB, MJ, NJ, K1, K2, J1, J2, J3, JB
  157. COMPLEX*16 ALPHA
  158. * ..
  159. * .. External Functions ..
  160. LOGICAL LSAME
  161. INTEGER ILAENV
  162. EXTERNAL LSAME, ILAENV
  163. * ..
  164. * .. External Subroutines ..
  165. EXTERNAL ZLASYF_AA, ZGEMM, ZGEMV, ZSCAL, ZCOPY,
  166. $ ZSWAP, XERBLA
  167. * ..
  168. * .. Intrinsic Functions ..
  169. INTRINSIC MAX
  170. * ..
  171. * .. Executable Statements ..
  172. *
  173. * Determine the block size
  174. *
  175. NB = ILAENV( 1, 'ZSYTRF_AA', UPLO, N, -1, -1, -1 )
  176. *
  177. * Test the input parameters.
  178. *
  179. INFO = 0
  180. UPPER = LSAME( UPLO, 'U' )
  181. LQUERY = ( LWORK.EQ.-1 )
  182. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  183. INFO = -1
  184. ELSE IF( N.LT.0 ) THEN
  185. INFO = -2
  186. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  187. INFO = -4
  188. ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
  189. INFO = -7
  190. END IF
  191. *
  192. IF( INFO.EQ.0 ) THEN
  193. LWKOPT = (NB+1)*N
  194. WORK( 1 ) = LWKOPT
  195. END IF
  196. *
  197. IF( INFO.NE.0 ) THEN
  198. CALL XERBLA( 'ZSYTRF_AA', -INFO )
  199. RETURN
  200. ELSE IF( LQUERY ) THEN
  201. RETURN
  202. END IF
  203. *
  204. * Quick return
  205. *
  206. IF ( N.EQ.0 ) THEN
  207. RETURN
  208. ENDIF
  209. IPIV( 1 ) = 1
  210. IF ( N.EQ.1 ) THEN
  211. RETURN
  212. END IF
  213. *
  214. * Adjust block size based on the workspace size
  215. *
  216. IF( LWORK.LT.((1+NB)*N) ) THEN
  217. NB = ( LWORK-N ) / N
  218. END IF
  219. *
  220. IF( UPPER ) THEN
  221. *
  222. * .....................................................
  223. * Factorize A as U**T*D*U using the upper triangle of A
  224. * .....................................................
  225. *
  226. * Copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
  227. *
  228. CALL ZCOPY( N, A( 1, 1 ), LDA, WORK( 1 ), 1 )
  229. *
  230. * J is the main loop index, increasing from 1 to N in steps of
  231. * JB, where JB is the number of columns factorized by ZLASYF;
  232. * JB is either NB, or N-J+1 for the last block
  233. *
  234. J = 0
  235. 10 CONTINUE
  236. IF( J.GE.N )
  237. $ GO TO 20
  238. *
  239. * each step of the main loop
  240. * J is the last column of the previous panel
  241. * J1 is the first column of the current panel
  242. * K1 identifies if the previous column of the panel has been
  243. * explicitly stored, e.g., K1=1 for the first panel, and
  244. * K1=0 for the rest
  245. *
  246. J1 = J + 1
  247. JB = MIN( N-J1+1, NB )
  248. K1 = MAX(1, J)-J
  249. *
  250. * Panel factorization
  251. *
  252. CALL ZLASYF_AA( UPLO, 2-K1, N-J, JB,
  253. $ A( MAX(1, J), J+1 ), LDA,
  254. $ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
  255. *
  256. * Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
  257. *
  258. DO J2 = J+2, MIN(N, J+JB+1)
  259. IPIV( J2 ) = IPIV( J2 ) + J
  260. IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
  261. CALL ZSWAP( J1-K1-2, A( 1, J2 ), 1,
  262. $ A( 1, IPIV(J2) ), 1 )
  263. END IF
  264. END DO
  265. J = J + JB
  266. *
  267. * Trailing submatrix update, where
  268. * the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and
  269. * WORK stores the current block of the auxiriarly matrix H
  270. *
  271. IF( J.LT.N ) THEN
  272. *
  273. * If first panel and JB=1 (NB=1), then nothing to do
  274. *
  275. IF( J1.GT.1 .OR. JB.GT.1 ) THEN
  276. *
  277. * Merge rank-1 update with BLAS-3 update
  278. *
  279. ALPHA = A( J, J+1 )
  280. A( J, J+1 ) = ONE
  281. CALL ZCOPY( N-J, A( J-1, J+1 ), LDA,
  282. $ WORK( (J+1-J1+1)+JB*N ), 1 )
  283. CALL ZSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
  284. *
  285. * K1 identifies if the previous column of the panel has been
  286. * explicitly stored, e.g., K1=1 and K2= 0 for the first panel,
  287. * while K1=0 and K2=1 for the rest
  288. *
  289. IF( J1.GT.1 ) THEN
  290. *
  291. * Not first panel
  292. *
  293. K2 = 1
  294. ELSE
  295. *
  296. * First panel
  297. *
  298. K2 = 0
  299. *
  300. * First update skips the first column
  301. *
  302. JB = JB - 1
  303. END IF
  304. *
  305. DO J2 = J+1, N, NB
  306. NJ = MIN( NB, N-J2+1 )
  307. *
  308. * Update (J2, J2) diagonal block with ZGEMV
  309. *
  310. J3 = J2
  311. DO MJ = NJ-1, 1, -1
  312. CALL ZGEMV( 'No transpose', MJ, JB+1,
  313. $ -ONE, WORK( J3-J1+1+K1*N ), N,
  314. $ A( J1-K2, J3 ), 1,
  315. $ ONE, A( J3, J3 ), LDA )
  316. J3 = J3 + 1
  317. END DO
  318. *
  319. * Update off-diagonal block of J2-th block row with ZGEMM
  320. *
  321. CALL ZGEMM( 'Transpose', 'Transpose',
  322. $ NJ, N-J3+1, JB+1,
  323. $ -ONE, A( J1-K2, J2 ), LDA,
  324. $ WORK( J3-J1+1+K1*N ), N,
  325. $ ONE, A( J2, J3 ), LDA )
  326. END DO
  327. *
  328. * Recover T( J, J+1 )
  329. *
  330. A( J, J+1 ) = ALPHA
  331. END IF
  332. *
  333. * WORK(J+1, 1) stores H(J+1, 1)
  334. *
  335. CALL ZCOPY( N-J, A( J+1, J+1 ), LDA, WORK( 1 ), 1 )
  336. END IF
  337. GO TO 10
  338. ELSE
  339. *
  340. * .....................................................
  341. * Factorize A as L*D*L**T using the lower triangle of A
  342. * .....................................................
  343. *
  344. * copy first column A(1:N, 1) into H(1:N, 1)
  345. * (stored in WORK(1:N))
  346. *
  347. CALL ZCOPY( N, A( 1, 1 ), 1, WORK( 1 ), 1 )
  348. *
  349. * J is the main loop index, increasing from 1 to N in steps of
  350. * JB, where JB is the number of columns factorized by ZLASYF;
  351. * JB is either NB, or N-J+1 for the last block
  352. *
  353. J = 0
  354. 11 CONTINUE
  355. IF( J.GE.N )
  356. $ GO TO 20
  357. *
  358. * each step of the main loop
  359. * J is the last column of the previous panel
  360. * J1 is the first column of the current panel
  361. * K1 identifies if the previous column of the panel has been
  362. * explicitly stored, e.g., K1=1 for the first panel, and
  363. * K1=0 for the rest
  364. *
  365. J1 = J+1
  366. JB = MIN( N-J1+1, NB )
  367. K1 = MAX(1, J)-J
  368. *
  369. * Panel factorization
  370. *
  371. CALL ZLASYF_AA( UPLO, 2-K1, N-J, JB,
  372. $ A( J+1, MAX(1, J) ), LDA,
  373. $ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
  374. *
  375. * Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
  376. *
  377. DO J2 = J+2, MIN(N, J+JB+1)
  378. IPIV( J2 ) = IPIV( J2 ) + J
  379. IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
  380. CALL ZSWAP( J1-K1-2, A( J2, 1 ), LDA,
  381. $ A( IPIV(J2), 1 ), LDA )
  382. END IF
  383. END DO
  384. J = J + JB
  385. *
  386. * Trailing submatrix update, where
  387. * A(J2+1, J1-1) stores L(J2+1, J1) and
  388. * WORK(J2+1, 1) stores H(J2+1, 1)
  389. *
  390. IF( J.LT.N ) THEN
  391. *
  392. * if first panel and JB=1 (NB=1), then nothing to do
  393. *
  394. IF( J1.GT.1 .OR. JB.GT.1 ) THEN
  395. *
  396. * Merge rank-1 update with BLAS-3 update
  397. *
  398. ALPHA = A( J+1, J )
  399. A( J+1, J ) = ONE
  400. CALL ZCOPY( N-J, A( J+1, J-1 ), 1,
  401. $ WORK( (J+1-J1+1)+JB*N ), 1 )
  402. CALL ZSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
  403. *
  404. * K1 identifies if the previous column of the panel has been
  405. * explicitly stored, e.g., K1=1 and K2= 0 for the first panel,
  406. * while K1=0 and K2=1 for the rest
  407. *
  408. IF( J1.GT.1 ) THEN
  409. *
  410. * Not first panel
  411. *
  412. K2 = 1
  413. ELSE
  414. *
  415. * First panel
  416. *
  417. K2 = 0
  418. *
  419. * First update skips the first column
  420. *
  421. JB = JB - 1
  422. END IF
  423. *
  424. DO J2 = J+1, N, NB
  425. NJ = MIN( NB, N-J2+1 )
  426. *
  427. * Update (J2, J2) diagonal block with ZGEMV
  428. *
  429. J3 = J2
  430. DO MJ = NJ-1, 1, -1
  431. CALL ZGEMV( 'No transpose', MJ, JB+1,
  432. $ -ONE, WORK( J3-J1+1+K1*N ), N,
  433. $ A( J3, J1-K2 ), LDA,
  434. $ ONE, A( J3, J3 ), 1 )
  435. J3 = J3 + 1
  436. END DO
  437. *
  438. * Update off-diagonal block in J2-th block column with ZGEMM
  439. *
  440. CALL ZGEMM( 'No transpose', 'Transpose',
  441. $ N-J3+1, NJ, JB+1,
  442. $ -ONE, WORK( J3-J1+1+K1*N ), N,
  443. $ A( J2, J1-K2 ), LDA,
  444. $ ONE, A( J3, J2 ), LDA )
  445. END DO
  446. *
  447. * Recover T( J+1, J )
  448. *
  449. A( J+1, J ) = ALPHA
  450. END IF
  451. *
  452. * WORK(J+1, 1) stores H(J+1, 1)
  453. *
  454. CALL ZCOPY( N-J, A( J+1, J+1 ), 1, WORK( 1 ), 1 )
  455. END IF
  456. GO TO 11
  457. END IF
  458. *
  459. 20 CONTINUE
  460. WORK( 1 ) = LWKOPT
  461. RETURN
  462. *
  463. * End of ZSYTRF_AA
  464. *
  465. END