You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zporfsx.f 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690
  1. *> \brief \b ZPORFSX
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZPORFSX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zporfsx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zporfsx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zporfsx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, S, B,
  22. * LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
  23. * ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
  24. * WORK, RWORK, INFO )
  25. *
  26. * .. Scalar Arguments ..
  27. * CHARACTER UPLO, EQUED
  28. * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
  29. * $ N_ERR_BNDS
  30. * DOUBLE PRECISION RCOND
  31. * ..
  32. * .. Array Arguments ..
  33. * COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  34. * $ X( LDX, * ), WORK( * )
  35. * DOUBLE PRECISION RWORK( * ), S( * ), PARAMS(*), BERR( * ),
  36. * $ ERR_BNDS_NORM( NRHS, * ),
  37. * $ ERR_BNDS_COMP( NRHS, * )
  38. * ..
  39. *
  40. *
  41. *> \par Purpose:
  42. * =============
  43. *>
  44. *> \verbatim
  45. *>
  46. *> ZPORFSX improves the computed solution to a system of linear
  47. *> equations when the coefficient matrix is Hermitian positive
  48. *> definite, and provides error bounds and backward error estimates
  49. *> for the solution. In addition to normwise error bound, the code
  50. *> provides maximum componentwise error bound if possible. See
  51. *> comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
  52. *> error bounds.
  53. *>
  54. *> The original system of linear equations may have been equilibrated
  55. *> before calling this routine, as described by arguments EQUED and S
  56. *> below. In this case, the solution and error bounds returned are
  57. *> for the original unequilibrated system.
  58. *> \endverbatim
  59. *
  60. * Arguments:
  61. * ==========
  62. *
  63. *> \verbatim
  64. *> Some optional parameters are bundled in the PARAMS array. These
  65. *> settings determine how refinement is performed, but often the
  66. *> defaults are acceptable. If the defaults are acceptable, users
  67. *> can pass NPARAMS = 0 which prevents the source code from accessing
  68. *> the PARAMS argument.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] UPLO
  72. *> \verbatim
  73. *> UPLO is CHARACTER*1
  74. *> = 'U': Upper triangle of A is stored;
  75. *> = 'L': Lower triangle of A is stored.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] EQUED
  79. *> \verbatim
  80. *> EQUED is CHARACTER*1
  81. *> Specifies the form of equilibration that was done to A
  82. *> before calling this routine. This is needed to compute
  83. *> the solution and error bounds correctly.
  84. *> = 'N': No equilibration
  85. *> = 'Y': Both row and column equilibration, i.e., A has been
  86. *> replaced by diag(S) * A * diag(S).
  87. *> The right hand side B has been changed accordingly.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] N
  91. *> \verbatim
  92. *> N is INTEGER
  93. *> The order of the matrix A. N >= 0.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] NRHS
  97. *> \verbatim
  98. *> NRHS is INTEGER
  99. *> The number of right hand sides, i.e., the number of columns
  100. *> of the matrices B and X. NRHS >= 0.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] A
  104. *> \verbatim
  105. *> A is COMPLEX*16 array, dimension (LDA,N)
  106. *> The Hermitian matrix A. If UPLO = 'U', the leading N-by-N
  107. *> upper triangular part of A contains the upper triangular part
  108. *> of the matrix A, and the strictly lower triangular part of A
  109. *> is not referenced. If UPLO = 'L', the leading N-by-N lower
  110. *> triangular part of A contains the lower triangular part of
  111. *> the matrix A, and the strictly upper triangular part of A is
  112. *> not referenced.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] LDA
  116. *> \verbatim
  117. *> LDA is INTEGER
  118. *> The leading dimension of the array A. LDA >= max(1,N).
  119. *> \endverbatim
  120. *>
  121. *> \param[in] AF
  122. *> \verbatim
  123. *> AF is COMPLEX*16 array, dimension (LDAF,N)
  124. *> The triangular factor U or L from the Cholesky factorization
  125. *> A = U**H*U or A = L*L**H, as computed by ZPOTRF.
  126. *> \endverbatim
  127. *>
  128. *> \param[in] LDAF
  129. *> \verbatim
  130. *> LDAF is INTEGER
  131. *> The leading dimension of the array AF. LDAF >= max(1,N).
  132. *> \endverbatim
  133. *>
  134. *> \param[in,out] S
  135. *> \verbatim
  136. *> S is DOUBLE PRECISION array, dimension (N)
  137. *> The scale factors for A. If EQUED = 'Y', A is multiplied on
  138. *> the left and right by diag(S). S is an input argument if FACT =
  139. *> 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED
  140. *> = 'Y', each element of S must be positive. If S is output, each
  141. *> element of S is a power of the radix. If S is input, each element
  142. *> of S should be a power of the radix to ensure a reliable solution
  143. *> and error estimates. Scaling by powers of the radix does not cause
  144. *> rounding errors unless the result underflows or overflows.
  145. *> Rounding errors during scaling lead to refining with a matrix that
  146. *> is not equivalent to the input matrix, producing error estimates
  147. *> that may not be reliable.
  148. *> \endverbatim
  149. *>
  150. *> \param[in] B
  151. *> \verbatim
  152. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  153. *> The right hand side matrix B.
  154. *> \endverbatim
  155. *>
  156. *> \param[in] LDB
  157. *> \verbatim
  158. *> LDB is INTEGER
  159. *> The leading dimension of the array B. LDB >= max(1,N).
  160. *> \endverbatim
  161. *>
  162. *> \param[in,out] X
  163. *> \verbatim
  164. *> X is COMPLEX*16 array, dimension (LDX,NRHS)
  165. *> On entry, the solution matrix X, as computed by ZGETRS.
  166. *> On exit, the improved solution matrix X.
  167. *> \endverbatim
  168. *>
  169. *> \param[in] LDX
  170. *> \verbatim
  171. *> LDX is INTEGER
  172. *> The leading dimension of the array X. LDX >= max(1,N).
  173. *> \endverbatim
  174. *>
  175. *> \param[out] RCOND
  176. *> \verbatim
  177. *> RCOND is DOUBLE PRECISION
  178. *> Reciprocal scaled condition number. This is an estimate of the
  179. *> reciprocal Skeel condition number of the matrix A after
  180. *> equilibration (if done). If this is less than the machine
  181. *> precision (in particular, if it is zero), the matrix is singular
  182. *> to working precision. Note that the error may still be small even
  183. *> if this number is very small and the matrix appears ill-
  184. *> conditioned.
  185. *> \endverbatim
  186. *>
  187. *> \param[out] BERR
  188. *> \verbatim
  189. *> BERR is DOUBLE PRECISION array, dimension (NRHS)
  190. *> Componentwise relative backward error. This is the
  191. *> componentwise relative backward error of each solution vector X(j)
  192. *> (i.e., the smallest relative change in any element of A or B that
  193. *> makes X(j) an exact solution).
  194. *> \endverbatim
  195. *>
  196. *> \param[in] N_ERR_BNDS
  197. *> \verbatim
  198. *> N_ERR_BNDS is INTEGER
  199. *> Number of error bounds to return for each right hand side
  200. *> and each type (normwise or componentwise). See ERR_BNDS_NORM and
  201. *> ERR_BNDS_COMP below.
  202. *> \endverbatim
  203. *>
  204. *> \param[out] ERR_BNDS_NORM
  205. *> \verbatim
  206. *> ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  207. *> For each right-hand side, this array contains information about
  208. *> various error bounds and condition numbers corresponding to the
  209. *> normwise relative error, which is defined as follows:
  210. *>
  211. *> Normwise relative error in the ith solution vector:
  212. *> max_j (abs(XTRUE(j,i) - X(j,i)))
  213. *> ------------------------------
  214. *> max_j abs(X(j,i))
  215. *>
  216. *> The array is indexed by the type of error information as described
  217. *> below. There currently are up to three pieces of information
  218. *> returned.
  219. *>
  220. *> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  221. *> right-hand side.
  222. *>
  223. *> The second index in ERR_BNDS_NORM(:,err) contains the following
  224. *> three fields:
  225. *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
  226. *> reciprocal condition number is less than the threshold
  227. *> sqrt(n) * dlamch('Epsilon').
  228. *>
  229. *> err = 2 "Guaranteed" error bound: The estimated forward error,
  230. *> almost certainly within a factor of 10 of the true error
  231. *> so long as the next entry is greater than the threshold
  232. *> sqrt(n) * dlamch('Epsilon'). This error bound should only
  233. *> be trusted if the previous boolean is true.
  234. *>
  235. *> err = 3 Reciprocal condition number: Estimated normwise
  236. *> reciprocal condition number. Compared with the threshold
  237. *> sqrt(n) * dlamch('Epsilon') to determine if the error
  238. *> estimate is "guaranteed". These reciprocal condition
  239. *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  240. *> appropriately scaled matrix Z.
  241. *> Let Z = S*A, where S scales each row by a power of the
  242. *> radix so all absolute row sums of Z are approximately 1.
  243. *>
  244. *> See Lapack Working Note 165 for further details and extra
  245. *> cautions.
  246. *> \endverbatim
  247. *>
  248. *> \param[out] ERR_BNDS_COMP
  249. *> \verbatim
  250. *> ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  251. *> For each right-hand side, this array contains information about
  252. *> various error bounds and condition numbers corresponding to the
  253. *> componentwise relative error, which is defined as follows:
  254. *>
  255. *> Componentwise relative error in the ith solution vector:
  256. *> abs(XTRUE(j,i) - X(j,i))
  257. *> max_j ----------------------
  258. *> abs(X(j,i))
  259. *>
  260. *> The array is indexed by the right-hand side i (on which the
  261. *> componentwise relative error depends), and the type of error
  262. *> information as described below. There currently are up to three
  263. *> pieces of information returned for each right-hand side. If
  264. *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  265. *> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
  266. *> the first (:,N_ERR_BNDS) entries are returned.
  267. *>
  268. *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  269. *> right-hand side.
  270. *>
  271. *> The second index in ERR_BNDS_COMP(:,err) contains the following
  272. *> three fields:
  273. *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
  274. *> reciprocal condition number is less than the threshold
  275. *> sqrt(n) * dlamch('Epsilon').
  276. *>
  277. *> err = 2 "Guaranteed" error bound: The estimated forward error,
  278. *> almost certainly within a factor of 10 of the true error
  279. *> so long as the next entry is greater than the threshold
  280. *> sqrt(n) * dlamch('Epsilon'). This error bound should only
  281. *> be trusted if the previous boolean is true.
  282. *>
  283. *> err = 3 Reciprocal condition number: Estimated componentwise
  284. *> reciprocal condition number. Compared with the threshold
  285. *> sqrt(n) * dlamch('Epsilon') to determine if the error
  286. *> estimate is "guaranteed". These reciprocal condition
  287. *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  288. *> appropriately scaled matrix Z.
  289. *> Let Z = S*(A*diag(x)), where x is the solution for the
  290. *> current right-hand side and S scales each row of
  291. *> A*diag(x) by a power of the radix so all absolute row
  292. *> sums of Z are approximately 1.
  293. *>
  294. *> See Lapack Working Note 165 for further details and extra
  295. *> cautions.
  296. *> \endverbatim
  297. *>
  298. *> \param[in] NPARAMS
  299. *> \verbatim
  300. *> NPARAMS is INTEGER
  301. *> Specifies the number of parameters set in PARAMS. If <= 0, the
  302. *> PARAMS array is never referenced and default values are used.
  303. *> \endverbatim
  304. *>
  305. *> \param[in,out] PARAMS
  306. *> \verbatim
  307. *> PARAMS is DOUBLE PRECISION array, dimension NPARAMS
  308. *> Specifies algorithm parameters. If an entry is < 0.0, then
  309. *> that entry will be filled with default value used for that
  310. *> parameter. Only positions up to NPARAMS are accessed; defaults
  311. *> are used for higher-numbered parameters.
  312. *>
  313. *> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
  314. *> refinement or not.
  315. *> Default: 1.0D+0
  316. *> = 0.0: No refinement is performed, and no error bounds are
  317. *> computed.
  318. *> = 1.0: Use the double-precision refinement algorithm,
  319. *> possibly with doubled-single computations if the
  320. *> compilation environment does not support DOUBLE
  321. *> PRECISION.
  322. *> (other values are reserved for future use)
  323. *>
  324. *> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
  325. *> computations allowed for refinement.
  326. *> Default: 10
  327. *> Aggressive: Set to 100 to permit convergence using approximate
  328. *> factorizations or factorizations other than LU. If
  329. *> the factorization uses a technique other than
  330. *> Gaussian elimination, the guarantees in
  331. *> err_bnds_norm and err_bnds_comp may no longer be
  332. *> trustworthy.
  333. *>
  334. *> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
  335. *> will attempt to find a solution with small componentwise
  336. *> relative error in the double-precision algorithm. Positive
  337. *> is true, 0.0 is false.
  338. *> Default: 1.0 (attempt componentwise convergence)
  339. *> \endverbatim
  340. *>
  341. *> \param[out] WORK
  342. *> \verbatim
  343. *> WORK is COMPLEX*16 array, dimension (2*N)
  344. *> \endverbatim
  345. *>
  346. *> \param[out] RWORK
  347. *> \verbatim
  348. *> RWORK is DOUBLE PRECISION array, dimension (2*N)
  349. *> \endverbatim
  350. *>
  351. *> \param[out] INFO
  352. *> \verbatim
  353. *> INFO is INTEGER
  354. *> = 0: Successful exit. The solution to every right-hand side is
  355. *> guaranteed.
  356. *> < 0: If INFO = -i, the i-th argument had an illegal value
  357. *> > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
  358. *> has been completed, but the factor U is exactly singular, so
  359. *> the solution and error bounds could not be computed. RCOND = 0
  360. *> is returned.
  361. *> = N+J: The solution corresponding to the Jth right-hand side is
  362. *> not guaranteed. The solutions corresponding to other right-
  363. *> hand sides K with K > J may not be guaranteed as well, but
  364. *> only the first such right-hand side is reported. If a small
  365. *> componentwise error is not requested (PARAMS(3) = 0.0) then
  366. *> the Jth right-hand side is the first with a normwise error
  367. *> bound that is not guaranteed (the smallest J such
  368. *> that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
  369. *> the Jth right-hand side is the first with either a normwise or
  370. *> componentwise error bound that is not guaranteed (the smallest
  371. *> J such that either ERR_BNDS_NORM(J,1) = 0.0 or
  372. *> ERR_BNDS_COMP(J,1) = 0.0). See the definition of
  373. *> ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
  374. *> about all of the right-hand sides check ERR_BNDS_NORM or
  375. *> ERR_BNDS_COMP.
  376. *> \endverbatim
  377. *
  378. * Authors:
  379. * ========
  380. *
  381. *> \author Univ. of Tennessee
  382. *> \author Univ. of California Berkeley
  383. *> \author Univ. of Colorado Denver
  384. *> \author NAG Ltd.
  385. *
  386. *> \ingroup complex16POcomputational
  387. *
  388. * =====================================================================
  389. SUBROUTINE ZPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, S, B,
  390. $ LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
  391. $ ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
  392. $ WORK, RWORK, INFO )
  393. *
  394. * -- LAPACK computational routine --
  395. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  396. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  397. *
  398. * .. Scalar Arguments ..
  399. CHARACTER UPLO, EQUED
  400. INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
  401. $ N_ERR_BNDS
  402. DOUBLE PRECISION RCOND
  403. * ..
  404. * .. Array Arguments ..
  405. COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  406. $ X( LDX, * ), WORK( * )
  407. DOUBLE PRECISION RWORK( * ), S( * ), PARAMS(*), BERR( * ),
  408. $ ERR_BNDS_NORM( NRHS, * ),
  409. $ ERR_BNDS_COMP( NRHS, * )
  410. * ..
  411. *
  412. * ==================================================================
  413. *
  414. * .. Parameters ..
  415. DOUBLE PRECISION ZERO, ONE
  416. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  417. DOUBLE PRECISION ITREF_DEFAULT, ITHRESH_DEFAULT
  418. DOUBLE PRECISION COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
  419. DOUBLE PRECISION DZTHRESH_DEFAULT
  420. PARAMETER ( ITREF_DEFAULT = 1.0D+0 )
  421. PARAMETER ( ITHRESH_DEFAULT = 10.0D+0 )
  422. PARAMETER ( COMPONENTWISE_DEFAULT = 1.0D+0 )
  423. PARAMETER ( RTHRESH_DEFAULT = 0.5D+0 )
  424. PARAMETER ( DZTHRESH_DEFAULT = 0.25D+0 )
  425. INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  426. $ LA_LINRX_CWISE_I
  427. PARAMETER ( LA_LINRX_ITREF_I = 1,
  428. $ LA_LINRX_ITHRESH_I = 2 )
  429. PARAMETER ( LA_LINRX_CWISE_I = 3 )
  430. INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  431. $ LA_LINRX_RCOND_I
  432. PARAMETER ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  433. PARAMETER ( LA_LINRX_RCOND_I = 3 )
  434. * ..
  435. * .. Local Scalars ..
  436. CHARACTER(1) NORM
  437. LOGICAL RCEQU
  438. INTEGER J, PREC_TYPE, REF_TYPE
  439. INTEGER N_NORMS
  440. DOUBLE PRECISION ANORM, RCOND_TMP
  441. DOUBLE PRECISION ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
  442. LOGICAL IGNORE_CWISE
  443. INTEGER ITHRESH
  444. DOUBLE PRECISION RTHRESH, UNSTABLE_THRESH
  445. * ..
  446. * .. External Subroutines ..
  447. EXTERNAL XERBLA, ZPOCON, ZLA_PORFSX_EXTENDED
  448. * ..
  449. * .. Intrinsic Functions ..
  450. INTRINSIC MAX, SQRT, TRANSFER
  451. * ..
  452. * .. External Functions ..
  453. EXTERNAL LSAME, ILAPREC
  454. EXTERNAL DLAMCH, ZLANHE, ZLA_PORCOND_X, ZLA_PORCOND_C
  455. DOUBLE PRECISION DLAMCH, ZLANHE, ZLA_PORCOND_X, ZLA_PORCOND_C
  456. LOGICAL LSAME
  457. INTEGER ILAPREC
  458. * ..
  459. * .. Executable Statements ..
  460. *
  461. * Check the input parameters.
  462. *
  463. INFO = 0
  464. REF_TYPE = INT( ITREF_DEFAULT )
  465. IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
  466. IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
  467. PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
  468. ELSE
  469. REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
  470. END IF
  471. END IF
  472. *
  473. * Set default parameters.
  474. *
  475. ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
  476. ITHRESH = INT( ITHRESH_DEFAULT )
  477. RTHRESH = RTHRESH_DEFAULT
  478. UNSTABLE_THRESH = DZTHRESH_DEFAULT
  479. IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
  480. *
  481. IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
  482. IF ( PARAMS(LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
  483. PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
  484. ELSE
  485. ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
  486. END IF
  487. END IF
  488. IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
  489. IF ( PARAMS(LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
  490. IF ( IGNORE_CWISE ) THEN
  491. PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
  492. ELSE
  493. PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
  494. END IF
  495. ELSE
  496. IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
  497. END IF
  498. END IF
  499. IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
  500. N_NORMS = 0
  501. ELSE IF ( IGNORE_CWISE ) THEN
  502. N_NORMS = 1
  503. ELSE
  504. N_NORMS = 2
  505. END IF
  506. *
  507. RCEQU = LSAME( EQUED, 'Y' )
  508. *
  509. * Test input parameters.
  510. *
  511. IF (.NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  512. INFO = -1
  513. ELSE IF( .NOT.RCEQU .AND. .NOT.LSAME( EQUED, 'N' ) ) THEN
  514. INFO = -2
  515. ELSE IF( N.LT.0 ) THEN
  516. INFO = -3
  517. ELSE IF( NRHS.LT.0 ) THEN
  518. INFO = -4
  519. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  520. INFO = -6
  521. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  522. INFO = -8
  523. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  524. INFO = -11
  525. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  526. INFO = -13
  527. END IF
  528. IF( INFO.NE.0 ) THEN
  529. CALL XERBLA( 'ZPORFSX', -INFO )
  530. RETURN
  531. END IF
  532. *
  533. * Quick return if possible.
  534. *
  535. IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  536. RCOND = 1.0D+0
  537. DO J = 1, NRHS
  538. BERR( J ) = 0.0D+0
  539. IF ( N_ERR_BNDS .GE. 1 ) THEN
  540. ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  541. ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  542. END IF
  543. IF ( N_ERR_BNDS .GE. 2 ) THEN
  544. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
  545. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
  546. END IF
  547. IF ( N_ERR_BNDS .GE. 3 ) THEN
  548. ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
  549. ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
  550. END IF
  551. END DO
  552. RETURN
  553. END IF
  554. *
  555. * Default to failure.
  556. *
  557. RCOND = 0.0D+0
  558. DO J = 1, NRHS
  559. BERR( J ) = 1.0D+0
  560. IF ( N_ERR_BNDS .GE. 1 ) THEN
  561. ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  562. ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  563. END IF
  564. IF ( N_ERR_BNDS .GE. 2 ) THEN
  565. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  566. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  567. END IF
  568. IF ( N_ERR_BNDS .GE. 3 ) THEN
  569. ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
  570. ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
  571. END IF
  572. END DO
  573. *
  574. * Compute the norm of A and the reciprocal of the condition
  575. * number of A.
  576. *
  577. NORM = 'I'
  578. ANORM = ZLANHE( NORM, UPLO, N, A, LDA, RWORK )
  579. CALL ZPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK, RWORK,
  580. $ INFO )
  581. *
  582. * Perform refinement on each right-hand side
  583. *
  584. IF ( REF_TYPE .NE. 0 ) THEN
  585. PREC_TYPE = ILAPREC( 'E' )
  586. CALL ZLA_PORFSX_EXTENDED( PREC_TYPE, UPLO, N,
  587. $ NRHS, A, LDA, AF, LDAF, RCEQU, S, B,
  588. $ LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP,
  589. $ WORK, RWORK, WORK(N+1),
  590. $ TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N), RCOND,
  591. $ ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
  592. $ INFO )
  593. END IF
  594. ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
  595. IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1 ) THEN
  596. *
  597. * Compute scaled normwise condition number cond(A*C).
  598. *
  599. IF ( RCEQU ) THEN
  600. RCOND_TMP = ZLA_PORCOND_C( UPLO, N, A, LDA, AF, LDAF,
  601. $ S, .TRUE., INFO, WORK, RWORK )
  602. ELSE
  603. RCOND_TMP = ZLA_PORCOND_C( UPLO, N, A, LDA, AF, LDAF,
  604. $ S, .FALSE., INFO, WORK, RWORK )
  605. END IF
  606. DO J = 1, NRHS
  607. *
  608. * Cap the error at 1.0.
  609. *
  610. IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
  611. $ .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
  612. $ ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  613. *
  614. * Threshold the error (see LAWN).
  615. *
  616. IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
  617. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  618. ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
  619. IF ( INFO .LE. N ) INFO = N + J
  620. ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
  621. $ THEN
  622. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
  623. ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  624. END IF
  625. *
  626. * Save the condition number.
  627. *
  628. IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
  629. ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
  630. END IF
  631. END DO
  632. END IF
  633. IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2) THEN
  634. *
  635. * Compute componentwise condition number cond(A*diag(Y(:,J))) for
  636. * each right-hand side using the current solution as an estimate of
  637. * the true solution. If the componentwise error estimate is too
  638. * large, then the solution is a lousy estimate of truth and the
  639. * estimated RCOND may be too optimistic. To avoid misleading users,
  640. * the inverse condition number is set to 0.0 when the estimated
  641. * cwise error is at least CWISE_WRONG.
  642. *
  643. CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
  644. DO J = 1, NRHS
  645. IF (ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
  646. $ THEN
  647. RCOND_TMP = ZLA_PORCOND_X( UPLO, N, A, LDA, AF, LDAF,
  648. $ X(1,J), INFO, WORK, RWORK )
  649. ELSE
  650. RCOND_TMP = 0.0D+0
  651. END IF
  652. *
  653. * Cap the error at 1.0.
  654. *
  655. IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
  656. $ .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
  657. $ ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  658. *
  659. * Threshold the error (see LAWN).
  660. *
  661. IF (RCOND_TMP .LT. ILLRCOND_THRESH) THEN
  662. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  663. ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
  664. IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
  665. $ .AND. INFO.LT.N + J ) INFO = N + J
  666. ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
  667. $ .LT. ERR_LBND ) THEN
  668. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
  669. ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  670. END IF
  671. *
  672. * Save the condition number.
  673. *
  674. IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
  675. ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
  676. END IF
  677. END DO
  678. END IF
  679. *
  680. RETURN
  681. *
  682. * End of ZPORFSX
  683. *
  684. END