You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlarft.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324
  1. *> \brief \b ZLARFT forms the triangular factor T of a block reflector H = I - vtvH
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLARFT + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarft.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarft.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarft.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER DIRECT, STOREV
  25. * INTEGER K, LDT, LDV, N
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX*16 T( LDT, * ), TAU( * ), V( LDV, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> ZLARFT forms the triangular factor T of a complex block reflector H
  38. *> of order n, which is defined as a product of k elementary reflectors.
  39. *>
  40. *> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
  41. *>
  42. *> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
  43. *>
  44. *> If STOREV = 'C', the vector which defines the elementary reflector
  45. *> H(i) is stored in the i-th column of the array V, and
  46. *>
  47. *> H = I - V * T * V**H
  48. *>
  49. *> If STOREV = 'R', the vector which defines the elementary reflector
  50. *> H(i) is stored in the i-th row of the array V, and
  51. *>
  52. *> H = I - V**H * T * V
  53. *> \endverbatim
  54. *
  55. * Arguments:
  56. * ==========
  57. *
  58. *> \param[in] DIRECT
  59. *> \verbatim
  60. *> DIRECT is CHARACTER*1
  61. *> Specifies the order in which the elementary reflectors are
  62. *> multiplied to form the block reflector:
  63. *> = 'F': H = H(1) H(2) . . . H(k) (Forward)
  64. *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
  65. *> \endverbatim
  66. *>
  67. *> \param[in] STOREV
  68. *> \verbatim
  69. *> STOREV is CHARACTER*1
  70. *> Specifies how the vectors which define the elementary
  71. *> reflectors are stored (see also Further Details):
  72. *> = 'C': columnwise
  73. *> = 'R': rowwise
  74. *> \endverbatim
  75. *>
  76. *> \param[in] N
  77. *> \verbatim
  78. *> N is INTEGER
  79. *> The order of the block reflector H. N >= 0.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] K
  83. *> \verbatim
  84. *> K is INTEGER
  85. *> The order of the triangular factor T (= the number of
  86. *> elementary reflectors). K >= 1.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] V
  90. *> \verbatim
  91. *> V is COMPLEX*16 array, dimension
  92. *> (LDV,K) if STOREV = 'C'
  93. *> (LDV,N) if STOREV = 'R'
  94. *> The matrix V. See further details.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] LDV
  98. *> \verbatim
  99. *> LDV is INTEGER
  100. *> The leading dimension of the array V.
  101. *> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] TAU
  105. *> \verbatim
  106. *> TAU is COMPLEX*16 array, dimension (K)
  107. *> TAU(i) must contain the scalar factor of the elementary
  108. *> reflector H(i).
  109. *> \endverbatim
  110. *>
  111. *> \param[out] T
  112. *> \verbatim
  113. *> T is COMPLEX*16 array, dimension (LDT,K)
  114. *> The k by k triangular factor T of the block reflector.
  115. *> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
  116. *> lower triangular. The rest of the array is not used.
  117. *> \endverbatim
  118. *>
  119. *> \param[in] LDT
  120. *> \verbatim
  121. *> LDT is INTEGER
  122. *> The leading dimension of the array T. LDT >= K.
  123. *> \endverbatim
  124. *
  125. * Authors:
  126. * ========
  127. *
  128. *> \author Univ. of Tennessee
  129. *> \author Univ. of California Berkeley
  130. *> \author Univ. of Colorado Denver
  131. *> \author NAG Ltd.
  132. *
  133. *> \ingroup complex16OTHERauxiliary
  134. *
  135. *> \par Further Details:
  136. * =====================
  137. *>
  138. *> \verbatim
  139. *>
  140. *> The shape of the matrix V and the storage of the vectors which define
  141. *> the H(i) is best illustrated by the following example with n = 5 and
  142. *> k = 3. The elements equal to 1 are not stored.
  143. *>
  144. *> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
  145. *>
  146. *> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
  147. *> ( v1 1 ) ( 1 v2 v2 v2 )
  148. *> ( v1 v2 1 ) ( 1 v3 v3 )
  149. *> ( v1 v2 v3 )
  150. *> ( v1 v2 v3 )
  151. *>
  152. *> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
  153. *>
  154. *> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
  155. *> ( v1 v2 v3 ) ( v2 v2 v2 1 )
  156. *> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
  157. *> ( 1 v3 )
  158. *> ( 1 )
  159. *> \endverbatim
  160. *>
  161. * =====================================================================
  162. SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
  163. *
  164. * -- LAPACK auxiliary routine --
  165. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  166. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  167. *
  168. * .. Scalar Arguments ..
  169. CHARACTER DIRECT, STOREV
  170. INTEGER K, LDT, LDV, N
  171. * ..
  172. * .. Array Arguments ..
  173. COMPLEX*16 T( LDT, * ), TAU( * ), V( LDV, * )
  174. * ..
  175. *
  176. * =====================================================================
  177. *
  178. * .. Parameters ..
  179. COMPLEX*16 ONE, ZERO
  180. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
  181. $ ZERO = ( 0.0D+0, 0.0D+0 ) )
  182. * ..
  183. * .. Local Scalars ..
  184. INTEGER I, J, PREVLASTV, LASTV
  185. * ..
  186. * .. External Subroutines ..
  187. EXTERNAL ZGEMV, ZTRMV, ZGEMM
  188. * ..
  189. * .. External Functions ..
  190. LOGICAL LSAME
  191. EXTERNAL LSAME
  192. * ..
  193. * .. Executable Statements ..
  194. *
  195. * Quick return if possible
  196. *
  197. IF( N.EQ.0 )
  198. $ RETURN
  199. *
  200. IF( LSAME( DIRECT, 'F' ) ) THEN
  201. PREVLASTV = N
  202. DO I = 1, K
  203. PREVLASTV = MAX( PREVLASTV, I )
  204. IF( TAU( I ).EQ.ZERO ) THEN
  205. *
  206. * H(i) = I
  207. *
  208. DO J = 1, I
  209. T( J, I ) = ZERO
  210. END DO
  211. ELSE
  212. *
  213. * general case
  214. *
  215. IF( LSAME( STOREV, 'C' ) ) THEN
  216. * Skip any trailing zeros.
  217. DO LASTV = N, I+1, -1
  218. IF( V( LASTV, I ).NE.ZERO ) EXIT
  219. END DO
  220. DO J = 1, I-1
  221. T( J, I ) = -TAU( I ) * CONJG( V( I , J ) )
  222. END DO
  223. J = MIN( LASTV, PREVLASTV )
  224. *
  225. * T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i)
  226. *
  227. CALL ZGEMV( 'Conjugate transpose', J-I, I-1,
  228. $ -TAU( I ), V( I+1, 1 ), LDV,
  229. $ V( I+1, I ), 1, ONE, T( 1, I ), 1 )
  230. ELSE
  231. * Skip any trailing zeros.
  232. DO LASTV = N, I+1, -1
  233. IF( V( I, LASTV ).NE.ZERO ) EXIT
  234. END DO
  235. DO J = 1, I-1
  236. T( J, I ) = -TAU( I ) * V( J , I )
  237. END DO
  238. J = MIN( LASTV, PREVLASTV )
  239. *
  240. * T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H
  241. *
  242. CALL ZGEMM( 'N', 'C', I-1, 1, J-I, -TAU( I ),
  243. $ V( 1, I+1 ), LDV, V( I, I+1 ), LDV,
  244. $ ONE, T( 1, I ), LDT )
  245. END IF
  246. *
  247. * T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
  248. *
  249. CALL ZTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
  250. $ LDT, T( 1, I ), 1 )
  251. T( I, I ) = TAU( I )
  252. IF( I.GT.1 ) THEN
  253. PREVLASTV = MAX( PREVLASTV, LASTV )
  254. ELSE
  255. PREVLASTV = LASTV
  256. END IF
  257. END IF
  258. END DO
  259. ELSE
  260. PREVLASTV = 1
  261. DO I = K, 1, -1
  262. IF( TAU( I ).EQ.ZERO ) THEN
  263. *
  264. * H(i) = I
  265. *
  266. DO J = I, K
  267. T( J, I ) = ZERO
  268. END DO
  269. ELSE
  270. *
  271. * general case
  272. *
  273. IF( I.LT.K ) THEN
  274. IF( LSAME( STOREV, 'C' ) ) THEN
  275. * Skip any leading zeros.
  276. DO LASTV = 1, I-1
  277. IF( V( LASTV, I ).NE.ZERO ) EXIT
  278. END DO
  279. DO J = I+1, K
  280. T( J, I ) = -TAU( I ) * CONJG( V( N-K+I , J ) )
  281. END DO
  282. J = MAX( LASTV, PREVLASTV )
  283. *
  284. * T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i)
  285. *
  286. CALL ZGEMV( 'Conjugate transpose', N-K+I-J, K-I,
  287. $ -TAU( I ), V( J, I+1 ), LDV, V( J, I ),
  288. $ 1, ONE, T( I+1, I ), 1 )
  289. ELSE
  290. * Skip any leading zeros.
  291. DO LASTV = 1, I-1
  292. IF( V( I, LASTV ).NE.ZERO ) EXIT
  293. END DO
  294. DO J = I+1, K
  295. T( J, I ) = -TAU( I ) * V( J, N-K+I )
  296. END DO
  297. J = MAX( LASTV, PREVLASTV )
  298. *
  299. * T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H
  300. *
  301. CALL ZGEMM( 'N', 'C', K-I, 1, N-K+I-J, -TAU( I ),
  302. $ V( I+1, J ), LDV, V( I, J ), LDV,
  303. $ ONE, T( I+1, I ), LDT )
  304. END IF
  305. *
  306. * T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
  307. *
  308. CALL ZTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
  309. $ T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
  310. IF( I.GT.1 ) THEN
  311. PREVLASTV = MIN( PREVLASTV, LASTV )
  312. ELSE
  313. PREVLASTV = LASTV
  314. END IF
  315. END IF
  316. T( I, I ) = TAU( I )
  317. END IF
  318. END DO
  319. END IF
  320. RETURN
  321. *
  322. * End of ZLARFT
  323. *
  324. END