You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhbgst.f 49 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467
  1. *> \brief \b ZHBGST
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHBGST + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbgst.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbgst.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbgst.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X,
  22. * LDX, WORK, RWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO, VECT
  26. * INTEGER INFO, KA, KB, LDAB, LDBB, LDX, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION RWORK( * )
  30. * COMPLEX*16 AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
  31. * $ X( LDX, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> ZHBGST reduces a complex Hermitian-definite banded generalized
  41. *> eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y,
  42. *> such that C has the same bandwidth as A.
  43. *>
  44. *> B must have been previously factorized as S**H*S by ZPBSTF, using a
  45. *> split Cholesky factorization. A is overwritten by C = X**H*A*X, where
  46. *> X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the
  47. *> bandwidth of A.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] VECT
  54. *> \verbatim
  55. *> VECT is CHARACTER*1
  56. *> = 'N': do not form the transformation matrix X;
  57. *> = 'V': form X.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] UPLO
  61. *> \verbatim
  62. *> UPLO is CHARACTER*1
  63. *> = 'U': Upper triangle of A is stored;
  64. *> = 'L': Lower triangle of A is stored.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] N
  68. *> \verbatim
  69. *> N is INTEGER
  70. *> The order of the matrices A and B. N >= 0.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] KA
  74. *> \verbatim
  75. *> KA is INTEGER
  76. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  77. *> or the number of subdiagonals if UPLO = 'L'. KA >= 0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] KB
  81. *> \verbatim
  82. *> KB is INTEGER
  83. *> The number of superdiagonals of the matrix B if UPLO = 'U',
  84. *> or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0.
  85. *> \endverbatim
  86. *>
  87. *> \param[in,out] AB
  88. *> \verbatim
  89. *> AB is COMPLEX*16 array, dimension (LDAB,N)
  90. *> On entry, the upper or lower triangle of the Hermitian band
  91. *> matrix A, stored in the first ka+1 rows of the array. The
  92. *> j-th column of A is stored in the j-th column of the array AB
  93. *> as follows:
  94. *> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
  95. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
  96. *>
  97. *> On exit, the transformed matrix X**H*A*X, stored in the same
  98. *> format as A.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LDAB
  102. *> \verbatim
  103. *> LDAB is INTEGER
  104. *> The leading dimension of the array AB. LDAB >= KA+1.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] BB
  108. *> \verbatim
  109. *> BB is COMPLEX*16 array, dimension (LDBB,N)
  110. *> The banded factor S from the split Cholesky factorization of
  111. *> B, as returned by ZPBSTF, stored in the first kb+1 rows of
  112. *> the array.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] LDBB
  116. *> \verbatim
  117. *> LDBB is INTEGER
  118. *> The leading dimension of the array BB. LDBB >= KB+1.
  119. *> \endverbatim
  120. *>
  121. *> \param[out] X
  122. *> \verbatim
  123. *> X is COMPLEX*16 array, dimension (LDX,N)
  124. *> If VECT = 'V', the n-by-n matrix X.
  125. *> If VECT = 'N', the array X is not referenced.
  126. *> \endverbatim
  127. *>
  128. *> \param[in] LDX
  129. *> \verbatim
  130. *> LDX is INTEGER
  131. *> The leading dimension of the array X.
  132. *> LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.
  133. *> \endverbatim
  134. *>
  135. *> \param[out] WORK
  136. *> \verbatim
  137. *> WORK is COMPLEX*16 array, dimension (N)
  138. *> \endverbatim
  139. *>
  140. *> \param[out] RWORK
  141. *> \verbatim
  142. *> RWORK is DOUBLE PRECISION array, dimension (N)
  143. *> \endverbatim
  144. *>
  145. *> \param[out] INFO
  146. *> \verbatim
  147. *> INFO is INTEGER
  148. *> = 0: successful exit
  149. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  150. *> \endverbatim
  151. *
  152. * Authors:
  153. * ========
  154. *
  155. *> \author Univ. of Tennessee
  156. *> \author Univ. of California Berkeley
  157. *> \author Univ. of Colorado Denver
  158. *> \author NAG Ltd.
  159. *
  160. *> \ingroup complex16OTHERcomputational
  161. *
  162. * =====================================================================
  163. SUBROUTINE ZHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X,
  164. $ LDX, WORK, RWORK, INFO )
  165. *
  166. * -- LAPACK computational routine --
  167. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  168. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  169. *
  170. * .. Scalar Arguments ..
  171. CHARACTER UPLO, VECT
  172. INTEGER INFO, KA, KB, LDAB, LDBB, LDX, N
  173. * ..
  174. * .. Array Arguments ..
  175. DOUBLE PRECISION RWORK( * )
  176. COMPLEX*16 AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
  177. $ X( LDX, * )
  178. * ..
  179. *
  180. * =====================================================================
  181. *
  182. * .. Parameters ..
  183. COMPLEX*16 CZERO, CONE
  184. DOUBLE PRECISION ONE
  185. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
  186. $ CONE = ( 1.0D+0, 0.0D+0 ), ONE = 1.0D+0 )
  187. * ..
  188. * .. Local Scalars ..
  189. LOGICAL UPDATE, UPPER, WANTX
  190. INTEGER I, I0, I1, I2, INCA, J, J1, J1T, J2, J2T, K,
  191. $ KA1, KB1, KBT, L, M, NR, NRT, NX
  192. DOUBLE PRECISION BII
  193. COMPLEX*16 RA, RA1, T
  194. * ..
  195. * .. External Functions ..
  196. LOGICAL LSAME
  197. EXTERNAL LSAME
  198. * ..
  199. * .. External Subroutines ..
  200. EXTERNAL XERBLA, ZDSCAL, ZGERC, ZGERU, ZLACGV, ZLAR2V,
  201. $ ZLARGV, ZLARTG, ZLARTV, ZLASET, ZROT
  202. * ..
  203. * .. Intrinsic Functions ..
  204. INTRINSIC DBLE, DCONJG, MAX, MIN
  205. * ..
  206. * .. Executable Statements ..
  207. *
  208. * Test the input parameters
  209. *
  210. WANTX = LSAME( VECT, 'V' )
  211. UPPER = LSAME( UPLO, 'U' )
  212. KA1 = KA + 1
  213. KB1 = KB + 1
  214. INFO = 0
  215. IF( .NOT.WANTX .AND. .NOT.LSAME( VECT, 'N' ) ) THEN
  216. INFO = -1
  217. ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  218. INFO = -2
  219. ELSE IF( N.LT.0 ) THEN
  220. INFO = -3
  221. ELSE IF( KA.LT.0 ) THEN
  222. INFO = -4
  223. ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
  224. INFO = -5
  225. ELSE IF( LDAB.LT.KA+1 ) THEN
  226. INFO = -7
  227. ELSE IF( LDBB.LT.KB+1 ) THEN
  228. INFO = -9
  229. ELSE IF( LDX.LT.1 .OR. WANTX .AND. LDX.LT.MAX( 1, N ) ) THEN
  230. INFO = -11
  231. END IF
  232. IF( INFO.NE.0 ) THEN
  233. CALL XERBLA( 'ZHBGST', -INFO )
  234. RETURN
  235. END IF
  236. *
  237. * Quick return if possible
  238. *
  239. IF( N.EQ.0 )
  240. $ RETURN
  241. *
  242. INCA = LDAB*KA1
  243. *
  244. * Initialize X to the unit matrix, if needed
  245. *
  246. IF( WANTX )
  247. $ CALL ZLASET( 'Full', N, N, CZERO, CONE, X, LDX )
  248. *
  249. * Set M to the splitting point m. It must be the same value as is
  250. * used in ZPBSTF. The chosen value allows the arrays WORK and RWORK
  251. * to be of dimension (N).
  252. *
  253. M = ( N+KB ) / 2
  254. *
  255. * The routine works in two phases, corresponding to the two halves
  256. * of the split Cholesky factorization of B as S**H*S where
  257. *
  258. * S = ( U )
  259. * ( M L )
  260. *
  261. * with U upper triangular of order m, and L lower triangular of
  262. * order n-m. S has the same bandwidth as B.
  263. *
  264. * S is treated as a product of elementary matrices:
  265. *
  266. * S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n)
  267. *
  268. * where S(i) is determined by the i-th row of S.
  269. *
  270. * In phase 1, the index i takes the values n, n-1, ... , m+1;
  271. * in phase 2, it takes the values 1, 2, ... , m.
  272. *
  273. * For each value of i, the current matrix A is updated by forming
  274. * inv(S(i))**H*A*inv(S(i)). This creates a triangular bulge outside
  275. * the band of A. The bulge is then pushed down toward the bottom of
  276. * A in phase 1, and up toward the top of A in phase 2, by applying
  277. * plane rotations.
  278. *
  279. * There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1
  280. * of them are linearly independent, so annihilating a bulge requires
  281. * only 2*kb-1 plane rotations. The rotations are divided into a 1st
  282. * set of kb-1 rotations, and a 2nd set of kb rotations.
  283. *
  284. * Wherever possible, rotations are generated and applied in vector
  285. * operations of length NR between the indices J1 and J2 (sometimes
  286. * replaced by modified values NRT, J1T or J2T).
  287. *
  288. * The real cosines and complex sines of the rotations are stored in
  289. * the arrays RWORK and WORK, those of the 1st set in elements
  290. * 2:m-kb-1, and those of the 2nd set in elements m-kb+1:n.
  291. *
  292. * The bulges are not formed explicitly; nonzero elements outside the
  293. * band are created only when they are required for generating new
  294. * rotations; they are stored in the array WORK, in positions where
  295. * they are later overwritten by the sines of the rotations which
  296. * annihilate them.
  297. *
  298. * **************************** Phase 1 *****************************
  299. *
  300. * The logical structure of this phase is:
  301. *
  302. * UPDATE = .TRUE.
  303. * DO I = N, M + 1, -1
  304. * use S(i) to update A and create a new bulge
  305. * apply rotations to push all bulges KA positions downward
  306. * END DO
  307. * UPDATE = .FALSE.
  308. * DO I = M + KA + 1, N - 1
  309. * apply rotations to push all bulges KA positions downward
  310. * END DO
  311. *
  312. * To avoid duplicating code, the two loops are merged.
  313. *
  314. UPDATE = .TRUE.
  315. I = N + 1
  316. 10 CONTINUE
  317. IF( UPDATE ) THEN
  318. I = I - 1
  319. KBT = MIN( KB, I-1 )
  320. I0 = I - 1
  321. I1 = MIN( N, I+KA )
  322. I2 = I - KBT + KA1
  323. IF( I.LT.M+1 ) THEN
  324. UPDATE = .FALSE.
  325. I = I + 1
  326. I0 = M
  327. IF( KA.EQ.0 )
  328. $ GO TO 480
  329. GO TO 10
  330. END IF
  331. ELSE
  332. I = I + KA
  333. IF( I.GT.N-1 )
  334. $ GO TO 480
  335. END IF
  336. *
  337. IF( UPPER ) THEN
  338. *
  339. * Transform A, working with the upper triangle
  340. *
  341. IF( UPDATE ) THEN
  342. *
  343. * Form inv(S(i))**H * A * inv(S(i))
  344. *
  345. BII = DBLE( BB( KB1, I ) )
  346. AB( KA1, I ) = ( DBLE( AB( KA1, I ) ) / BII ) / BII
  347. DO 20 J = I + 1, I1
  348. AB( I-J+KA1, J ) = AB( I-J+KA1, J ) / BII
  349. 20 CONTINUE
  350. DO 30 J = MAX( 1, I-KA ), I - 1
  351. AB( J-I+KA1, I ) = AB( J-I+KA1, I ) / BII
  352. 30 CONTINUE
  353. DO 60 K = I - KBT, I - 1
  354. DO 40 J = I - KBT, K
  355. AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
  356. $ BB( J-I+KB1, I )*
  357. $ DCONJG( AB( K-I+KA1, I ) ) -
  358. $ DCONJG( BB( K-I+KB1, I ) )*
  359. $ AB( J-I+KA1, I ) +
  360. $ DBLE( AB( KA1, I ) )*
  361. $ BB( J-I+KB1, I )*
  362. $ DCONJG( BB( K-I+KB1, I ) )
  363. 40 CONTINUE
  364. DO 50 J = MAX( 1, I-KA ), I - KBT - 1
  365. AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
  366. $ DCONJG( BB( K-I+KB1, I ) )*
  367. $ AB( J-I+KA1, I )
  368. 50 CONTINUE
  369. 60 CONTINUE
  370. DO 80 J = I, I1
  371. DO 70 K = MAX( J-KA, I-KBT ), I - 1
  372. AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
  373. $ BB( K-I+KB1, I )*AB( I-J+KA1, J )
  374. 70 CONTINUE
  375. 80 CONTINUE
  376. *
  377. IF( WANTX ) THEN
  378. *
  379. * post-multiply X by inv(S(i))
  380. *
  381. CALL ZDSCAL( N-M, ONE / BII, X( M+1, I ), 1 )
  382. IF( KBT.GT.0 )
  383. $ CALL ZGERC( N-M, KBT, -CONE, X( M+1, I ), 1,
  384. $ BB( KB1-KBT, I ), 1, X( M+1, I-KBT ),
  385. $ LDX )
  386. END IF
  387. *
  388. * store a(i,i1) in RA1 for use in next loop over K
  389. *
  390. RA1 = AB( I-I1+KA1, I1 )
  391. END IF
  392. *
  393. * Generate and apply vectors of rotations to chase all the
  394. * existing bulges KA positions down toward the bottom of the
  395. * band
  396. *
  397. DO 130 K = 1, KB - 1
  398. IF( UPDATE ) THEN
  399. *
  400. * Determine the rotations which would annihilate the bulge
  401. * which has in theory just been created
  402. *
  403. IF( I-K+KA.LT.N .AND. I-K.GT.1 ) THEN
  404. *
  405. * generate rotation to annihilate a(i,i-k+ka+1)
  406. *
  407. CALL ZLARTG( AB( K+1, I-K+KA ), RA1,
  408. $ RWORK( I-K+KA-M ), WORK( I-K+KA-M ), RA )
  409. *
  410. * create nonzero element a(i-k,i-k+ka+1) outside the
  411. * band and store it in WORK(i-k)
  412. *
  413. T = -BB( KB1-K, I )*RA1
  414. WORK( I-K ) = RWORK( I-K+KA-M )*T -
  415. $ DCONJG( WORK( I-K+KA-M ) )*
  416. $ AB( 1, I-K+KA )
  417. AB( 1, I-K+KA ) = WORK( I-K+KA-M )*T +
  418. $ RWORK( I-K+KA-M )*AB( 1, I-K+KA )
  419. RA1 = RA
  420. END IF
  421. END IF
  422. J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
  423. NR = ( N-J2+KA ) / KA1
  424. J1 = J2 + ( NR-1 )*KA1
  425. IF( UPDATE ) THEN
  426. J2T = MAX( J2, I+2*KA-K+1 )
  427. ELSE
  428. J2T = J2
  429. END IF
  430. NRT = ( N-J2T+KA ) / KA1
  431. DO 90 J = J2T, J1, KA1
  432. *
  433. * create nonzero element a(j-ka,j+1) outside the band
  434. * and store it in WORK(j-m)
  435. *
  436. WORK( J-M ) = WORK( J-M )*AB( 1, J+1 )
  437. AB( 1, J+1 ) = RWORK( J-M )*AB( 1, J+1 )
  438. 90 CONTINUE
  439. *
  440. * generate rotations in 1st set to annihilate elements which
  441. * have been created outside the band
  442. *
  443. IF( NRT.GT.0 )
  444. $ CALL ZLARGV( NRT, AB( 1, J2T ), INCA, WORK( J2T-M ), KA1,
  445. $ RWORK( J2T-M ), KA1 )
  446. IF( NR.GT.0 ) THEN
  447. *
  448. * apply rotations in 1st set from the right
  449. *
  450. DO 100 L = 1, KA - 1
  451. CALL ZLARTV( NR, AB( KA1-L, J2 ), INCA,
  452. $ AB( KA-L, J2+1 ), INCA, RWORK( J2-M ),
  453. $ WORK( J2-M ), KA1 )
  454. 100 CONTINUE
  455. *
  456. * apply rotations in 1st set from both sides to diagonal
  457. * blocks
  458. *
  459. CALL ZLAR2V( NR, AB( KA1, J2 ), AB( KA1, J2+1 ),
  460. $ AB( KA, J2+1 ), INCA, RWORK( J2-M ),
  461. $ WORK( J2-M ), KA1 )
  462. *
  463. CALL ZLACGV( NR, WORK( J2-M ), KA1 )
  464. END IF
  465. *
  466. * start applying rotations in 1st set from the left
  467. *
  468. DO 110 L = KA - 1, KB - K + 1, -1
  469. NRT = ( N-J2+L ) / KA1
  470. IF( NRT.GT.0 )
  471. $ CALL ZLARTV( NRT, AB( L, J2+KA1-L ), INCA,
  472. $ AB( L+1, J2+KA1-L ), INCA, RWORK( J2-M ),
  473. $ WORK( J2-M ), KA1 )
  474. 110 CONTINUE
  475. *
  476. IF( WANTX ) THEN
  477. *
  478. * post-multiply X by product of rotations in 1st set
  479. *
  480. DO 120 J = J2, J1, KA1
  481. CALL ZROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
  482. $ RWORK( J-M ), DCONJG( WORK( J-M ) ) )
  483. 120 CONTINUE
  484. END IF
  485. 130 CONTINUE
  486. *
  487. IF( UPDATE ) THEN
  488. IF( I2.LE.N .AND. KBT.GT.0 ) THEN
  489. *
  490. * create nonzero element a(i-kbt,i-kbt+ka+1) outside the
  491. * band and store it in WORK(i-kbt)
  492. *
  493. WORK( I-KBT ) = -BB( KB1-KBT, I )*RA1
  494. END IF
  495. END IF
  496. *
  497. DO 170 K = KB, 1, -1
  498. IF( UPDATE ) THEN
  499. J2 = I - K - 1 + MAX( 2, K-I0+1 )*KA1
  500. ELSE
  501. J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
  502. END IF
  503. *
  504. * finish applying rotations in 2nd set from the left
  505. *
  506. DO 140 L = KB - K, 1, -1
  507. NRT = ( N-J2+KA+L ) / KA1
  508. IF( NRT.GT.0 )
  509. $ CALL ZLARTV( NRT, AB( L, J2-L+1 ), INCA,
  510. $ AB( L+1, J2-L+1 ), INCA, RWORK( J2-KA ),
  511. $ WORK( J2-KA ), KA1 )
  512. 140 CONTINUE
  513. NR = ( N-J2+KA ) / KA1
  514. J1 = J2 + ( NR-1 )*KA1
  515. DO 150 J = J1, J2, -KA1
  516. WORK( J ) = WORK( J-KA )
  517. RWORK( J ) = RWORK( J-KA )
  518. 150 CONTINUE
  519. DO 160 J = J2, J1, KA1
  520. *
  521. * create nonzero element a(j-ka,j+1) outside the band
  522. * and store it in WORK(j)
  523. *
  524. WORK( J ) = WORK( J )*AB( 1, J+1 )
  525. AB( 1, J+1 ) = RWORK( J )*AB( 1, J+1 )
  526. 160 CONTINUE
  527. IF( UPDATE ) THEN
  528. IF( I-K.LT.N-KA .AND. K.LE.KBT )
  529. $ WORK( I-K+KA ) = WORK( I-K )
  530. END IF
  531. 170 CONTINUE
  532. *
  533. DO 210 K = KB, 1, -1
  534. J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
  535. NR = ( N-J2+KA ) / KA1
  536. J1 = J2 + ( NR-1 )*KA1
  537. IF( NR.GT.0 ) THEN
  538. *
  539. * generate rotations in 2nd set to annihilate elements
  540. * which have been created outside the band
  541. *
  542. CALL ZLARGV( NR, AB( 1, J2 ), INCA, WORK( J2 ), KA1,
  543. $ RWORK( J2 ), KA1 )
  544. *
  545. * apply rotations in 2nd set from the right
  546. *
  547. DO 180 L = 1, KA - 1
  548. CALL ZLARTV( NR, AB( KA1-L, J2 ), INCA,
  549. $ AB( KA-L, J2+1 ), INCA, RWORK( J2 ),
  550. $ WORK( J2 ), KA1 )
  551. 180 CONTINUE
  552. *
  553. * apply rotations in 2nd set from both sides to diagonal
  554. * blocks
  555. *
  556. CALL ZLAR2V( NR, AB( KA1, J2 ), AB( KA1, J2+1 ),
  557. $ AB( KA, J2+1 ), INCA, RWORK( J2 ),
  558. $ WORK( J2 ), KA1 )
  559. *
  560. CALL ZLACGV( NR, WORK( J2 ), KA1 )
  561. END IF
  562. *
  563. * start applying rotations in 2nd set from the left
  564. *
  565. DO 190 L = KA - 1, KB - K + 1, -1
  566. NRT = ( N-J2+L ) / KA1
  567. IF( NRT.GT.0 )
  568. $ CALL ZLARTV( NRT, AB( L, J2+KA1-L ), INCA,
  569. $ AB( L+1, J2+KA1-L ), INCA, RWORK( J2 ),
  570. $ WORK( J2 ), KA1 )
  571. 190 CONTINUE
  572. *
  573. IF( WANTX ) THEN
  574. *
  575. * post-multiply X by product of rotations in 2nd set
  576. *
  577. DO 200 J = J2, J1, KA1
  578. CALL ZROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
  579. $ RWORK( J ), DCONJG( WORK( J ) ) )
  580. 200 CONTINUE
  581. END IF
  582. 210 CONTINUE
  583. *
  584. DO 230 K = 1, KB - 1
  585. J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
  586. *
  587. * finish applying rotations in 1st set from the left
  588. *
  589. DO 220 L = KB - K, 1, -1
  590. NRT = ( N-J2+L ) / KA1
  591. IF( NRT.GT.0 )
  592. $ CALL ZLARTV( NRT, AB( L, J2+KA1-L ), INCA,
  593. $ AB( L+1, J2+KA1-L ), INCA, RWORK( J2-M ),
  594. $ WORK( J2-M ), KA1 )
  595. 220 CONTINUE
  596. 230 CONTINUE
  597. *
  598. IF( KB.GT.1 ) THEN
  599. DO 240 J = N - 1, J2 + KA, -1
  600. RWORK( J-M ) = RWORK( J-KA-M )
  601. WORK( J-M ) = WORK( J-KA-M )
  602. 240 CONTINUE
  603. END IF
  604. *
  605. ELSE
  606. *
  607. * Transform A, working with the lower triangle
  608. *
  609. IF( UPDATE ) THEN
  610. *
  611. * Form inv(S(i))**H * A * inv(S(i))
  612. *
  613. BII = DBLE( BB( 1, I ) )
  614. AB( 1, I ) = ( DBLE( AB( 1, I ) ) / BII ) / BII
  615. DO 250 J = I + 1, I1
  616. AB( J-I+1, I ) = AB( J-I+1, I ) / BII
  617. 250 CONTINUE
  618. DO 260 J = MAX( 1, I-KA ), I - 1
  619. AB( I-J+1, J ) = AB( I-J+1, J ) / BII
  620. 260 CONTINUE
  621. DO 290 K = I - KBT, I - 1
  622. DO 270 J = I - KBT, K
  623. AB( K-J+1, J ) = AB( K-J+1, J ) -
  624. $ BB( I-J+1, J )*DCONJG( AB( I-K+1,
  625. $ K ) ) - DCONJG( BB( I-K+1, K ) )*
  626. $ AB( I-J+1, J ) + DBLE( AB( 1, I ) )*
  627. $ BB( I-J+1, J )*DCONJG( BB( I-K+1,
  628. $ K ) )
  629. 270 CONTINUE
  630. DO 280 J = MAX( 1, I-KA ), I - KBT - 1
  631. AB( K-J+1, J ) = AB( K-J+1, J ) -
  632. $ DCONJG( BB( I-K+1, K ) )*
  633. $ AB( I-J+1, J )
  634. 280 CONTINUE
  635. 290 CONTINUE
  636. DO 310 J = I, I1
  637. DO 300 K = MAX( J-KA, I-KBT ), I - 1
  638. AB( J-K+1, K ) = AB( J-K+1, K ) -
  639. $ BB( I-K+1, K )*AB( J-I+1, I )
  640. 300 CONTINUE
  641. 310 CONTINUE
  642. *
  643. IF( WANTX ) THEN
  644. *
  645. * post-multiply X by inv(S(i))
  646. *
  647. CALL ZDSCAL( N-M, ONE / BII, X( M+1, I ), 1 )
  648. IF( KBT.GT.0 )
  649. $ CALL ZGERU( N-M, KBT, -CONE, X( M+1, I ), 1,
  650. $ BB( KBT+1, I-KBT ), LDBB-1,
  651. $ X( M+1, I-KBT ), LDX )
  652. END IF
  653. *
  654. * store a(i1,i) in RA1 for use in next loop over K
  655. *
  656. RA1 = AB( I1-I+1, I )
  657. END IF
  658. *
  659. * Generate and apply vectors of rotations to chase all the
  660. * existing bulges KA positions down toward the bottom of the
  661. * band
  662. *
  663. DO 360 K = 1, KB - 1
  664. IF( UPDATE ) THEN
  665. *
  666. * Determine the rotations which would annihilate the bulge
  667. * which has in theory just been created
  668. *
  669. IF( I-K+KA.LT.N .AND. I-K.GT.1 ) THEN
  670. *
  671. * generate rotation to annihilate a(i-k+ka+1,i)
  672. *
  673. CALL ZLARTG( AB( KA1-K, I ), RA1, RWORK( I-K+KA-M ),
  674. $ WORK( I-K+KA-M ), RA )
  675. *
  676. * create nonzero element a(i-k+ka+1,i-k) outside the
  677. * band and store it in WORK(i-k)
  678. *
  679. T = -BB( K+1, I-K )*RA1
  680. WORK( I-K ) = RWORK( I-K+KA-M )*T -
  681. $ DCONJG( WORK( I-K+KA-M ) )*
  682. $ AB( KA1, I-K )
  683. AB( KA1, I-K ) = WORK( I-K+KA-M )*T +
  684. $ RWORK( I-K+KA-M )*AB( KA1, I-K )
  685. RA1 = RA
  686. END IF
  687. END IF
  688. J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
  689. NR = ( N-J2+KA ) / KA1
  690. J1 = J2 + ( NR-1 )*KA1
  691. IF( UPDATE ) THEN
  692. J2T = MAX( J2, I+2*KA-K+1 )
  693. ELSE
  694. J2T = J2
  695. END IF
  696. NRT = ( N-J2T+KA ) / KA1
  697. DO 320 J = J2T, J1, KA1
  698. *
  699. * create nonzero element a(j+1,j-ka) outside the band
  700. * and store it in WORK(j-m)
  701. *
  702. WORK( J-M ) = WORK( J-M )*AB( KA1, J-KA+1 )
  703. AB( KA1, J-KA+1 ) = RWORK( J-M )*AB( KA1, J-KA+1 )
  704. 320 CONTINUE
  705. *
  706. * generate rotations in 1st set to annihilate elements which
  707. * have been created outside the band
  708. *
  709. IF( NRT.GT.0 )
  710. $ CALL ZLARGV( NRT, AB( KA1, J2T-KA ), INCA, WORK( J2T-M ),
  711. $ KA1, RWORK( J2T-M ), KA1 )
  712. IF( NR.GT.0 ) THEN
  713. *
  714. * apply rotations in 1st set from the left
  715. *
  716. DO 330 L = 1, KA - 1
  717. CALL ZLARTV( NR, AB( L+1, J2-L ), INCA,
  718. $ AB( L+2, J2-L ), INCA, RWORK( J2-M ),
  719. $ WORK( J2-M ), KA1 )
  720. 330 CONTINUE
  721. *
  722. * apply rotations in 1st set from both sides to diagonal
  723. * blocks
  724. *
  725. CALL ZLAR2V( NR, AB( 1, J2 ), AB( 1, J2+1 ), AB( 2, J2 ),
  726. $ INCA, RWORK( J2-M ), WORK( J2-M ), KA1 )
  727. *
  728. CALL ZLACGV( NR, WORK( J2-M ), KA1 )
  729. END IF
  730. *
  731. * start applying rotations in 1st set from the right
  732. *
  733. DO 340 L = KA - 1, KB - K + 1, -1
  734. NRT = ( N-J2+L ) / KA1
  735. IF( NRT.GT.0 )
  736. $ CALL ZLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
  737. $ AB( KA1-L, J2+1 ), INCA, RWORK( J2-M ),
  738. $ WORK( J2-M ), KA1 )
  739. 340 CONTINUE
  740. *
  741. IF( WANTX ) THEN
  742. *
  743. * post-multiply X by product of rotations in 1st set
  744. *
  745. DO 350 J = J2, J1, KA1
  746. CALL ZROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
  747. $ RWORK( J-M ), WORK( J-M ) )
  748. 350 CONTINUE
  749. END IF
  750. 360 CONTINUE
  751. *
  752. IF( UPDATE ) THEN
  753. IF( I2.LE.N .AND. KBT.GT.0 ) THEN
  754. *
  755. * create nonzero element a(i-kbt+ka+1,i-kbt) outside the
  756. * band and store it in WORK(i-kbt)
  757. *
  758. WORK( I-KBT ) = -BB( KBT+1, I-KBT )*RA1
  759. END IF
  760. END IF
  761. *
  762. DO 400 K = KB, 1, -1
  763. IF( UPDATE ) THEN
  764. J2 = I - K - 1 + MAX( 2, K-I0+1 )*KA1
  765. ELSE
  766. J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
  767. END IF
  768. *
  769. * finish applying rotations in 2nd set from the right
  770. *
  771. DO 370 L = KB - K, 1, -1
  772. NRT = ( N-J2+KA+L ) / KA1
  773. IF( NRT.GT.0 )
  774. $ CALL ZLARTV( NRT, AB( KA1-L+1, J2-KA ), INCA,
  775. $ AB( KA1-L, J2-KA+1 ), INCA,
  776. $ RWORK( J2-KA ), WORK( J2-KA ), KA1 )
  777. 370 CONTINUE
  778. NR = ( N-J2+KA ) / KA1
  779. J1 = J2 + ( NR-1 )*KA1
  780. DO 380 J = J1, J2, -KA1
  781. WORK( J ) = WORK( J-KA )
  782. RWORK( J ) = RWORK( J-KA )
  783. 380 CONTINUE
  784. DO 390 J = J2, J1, KA1
  785. *
  786. * create nonzero element a(j+1,j-ka) outside the band
  787. * and store it in WORK(j)
  788. *
  789. WORK( J ) = WORK( J )*AB( KA1, J-KA+1 )
  790. AB( KA1, J-KA+1 ) = RWORK( J )*AB( KA1, J-KA+1 )
  791. 390 CONTINUE
  792. IF( UPDATE ) THEN
  793. IF( I-K.LT.N-KA .AND. K.LE.KBT )
  794. $ WORK( I-K+KA ) = WORK( I-K )
  795. END IF
  796. 400 CONTINUE
  797. *
  798. DO 440 K = KB, 1, -1
  799. J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
  800. NR = ( N-J2+KA ) / KA1
  801. J1 = J2 + ( NR-1 )*KA1
  802. IF( NR.GT.0 ) THEN
  803. *
  804. * generate rotations in 2nd set to annihilate elements
  805. * which have been created outside the band
  806. *
  807. CALL ZLARGV( NR, AB( KA1, J2-KA ), INCA, WORK( J2 ), KA1,
  808. $ RWORK( J2 ), KA1 )
  809. *
  810. * apply rotations in 2nd set from the left
  811. *
  812. DO 410 L = 1, KA - 1
  813. CALL ZLARTV( NR, AB( L+1, J2-L ), INCA,
  814. $ AB( L+2, J2-L ), INCA, RWORK( J2 ),
  815. $ WORK( J2 ), KA1 )
  816. 410 CONTINUE
  817. *
  818. * apply rotations in 2nd set from both sides to diagonal
  819. * blocks
  820. *
  821. CALL ZLAR2V( NR, AB( 1, J2 ), AB( 1, J2+1 ), AB( 2, J2 ),
  822. $ INCA, RWORK( J2 ), WORK( J2 ), KA1 )
  823. *
  824. CALL ZLACGV( NR, WORK( J2 ), KA1 )
  825. END IF
  826. *
  827. * start applying rotations in 2nd set from the right
  828. *
  829. DO 420 L = KA - 1, KB - K + 1, -1
  830. NRT = ( N-J2+L ) / KA1
  831. IF( NRT.GT.0 )
  832. $ CALL ZLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
  833. $ AB( KA1-L, J2+1 ), INCA, RWORK( J2 ),
  834. $ WORK( J2 ), KA1 )
  835. 420 CONTINUE
  836. *
  837. IF( WANTX ) THEN
  838. *
  839. * post-multiply X by product of rotations in 2nd set
  840. *
  841. DO 430 J = J2, J1, KA1
  842. CALL ZROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
  843. $ RWORK( J ), WORK( J ) )
  844. 430 CONTINUE
  845. END IF
  846. 440 CONTINUE
  847. *
  848. DO 460 K = 1, KB - 1
  849. J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
  850. *
  851. * finish applying rotations in 1st set from the right
  852. *
  853. DO 450 L = KB - K, 1, -1
  854. NRT = ( N-J2+L ) / KA1
  855. IF( NRT.GT.0 )
  856. $ CALL ZLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
  857. $ AB( KA1-L, J2+1 ), INCA, RWORK( J2-M ),
  858. $ WORK( J2-M ), KA1 )
  859. 450 CONTINUE
  860. 460 CONTINUE
  861. *
  862. IF( KB.GT.1 ) THEN
  863. DO 470 J = N - 1, J2 + KA, -1
  864. RWORK( J-M ) = RWORK( J-KA-M )
  865. WORK( J-M ) = WORK( J-KA-M )
  866. 470 CONTINUE
  867. END IF
  868. *
  869. END IF
  870. *
  871. GO TO 10
  872. *
  873. 480 CONTINUE
  874. *
  875. * **************************** Phase 2 *****************************
  876. *
  877. * The logical structure of this phase is:
  878. *
  879. * UPDATE = .TRUE.
  880. * DO I = 1, M
  881. * use S(i) to update A and create a new bulge
  882. * apply rotations to push all bulges KA positions upward
  883. * END DO
  884. * UPDATE = .FALSE.
  885. * DO I = M - KA - 1, 2, -1
  886. * apply rotations to push all bulges KA positions upward
  887. * END DO
  888. *
  889. * To avoid duplicating code, the two loops are merged.
  890. *
  891. UPDATE = .TRUE.
  892. I = 0
  893. 490 CONTINUE
  894. IF( UPDATE ) THEN
  895. I = I + 1
  896. KBT = MIN( KB, M-I )
  897. I0 = I + 1
  898. I1 = MAX( 1, I-KA )
  899. I2 = I + KBT - KA1
  900. IF( I.GT.M ) THEN
  901. UPDATE = .FALSE.
  902. I = I - 1
  903. I0 = M + 1
  904. IF( KA.EQ.0 )
  905. $ RETURN
  906. GO TO 490
  907. END IF
  908. ELSE
  909. I = I - KA
  910. IF( I.LT.2 )
  911. $ RETURN
  912. END IF
  913. *
  914. IF( I.LT.M-KBT ) THEN
  915. NX = M
  916. ELSE
  917. NX = N
  918. END IF
  919. *
  920. IF( UPPER ) THEN
  921. *
  922. * Transform A, working with the upper triangle
  923. *
  924. IF( UPDATE ) THEN
  925. *
  926. * Form inv(S(i))**H * A * inv(S(i))
  927. *
  928. BII = DBLE( BB( KB1, I ) )
  929. AB( KA1, I ) = ( DBLE( AB( KA1, I ) ) / BII ) / BII
  930. DO 500 J = I1, I - 1
  931. AB( J-I+KA1, I ) = AB( J-I+KA1, I ) / BII
  932. 500 CONTINUE
  933. DO 510 J = I + 1, MIN( N, I+KA )
  934. AB( I-J+KA1, J ) = AB( I-J+KA1, J ) / BII
  935. 510 CONTINUE
  936. DO 540 K = I + 1, I + KBT
  937. DO 520 J = K, I + KBT
  938. AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
  939. $ BB( I-J+KB1, J )*
  940. $ DCONJG( AB( I-K+KA1, K ) ) -
  941. $ DCONJG( BB( I-K+KB1, K ) )*
  942. $ AB( I-J+KA1, J ) +
  943. $ DBLE( AB( KA1, I ) )*
  944. $ BB( I-J+KB1, J )*
  945. $ DCONJG( BB( I-K+KB1, K ) )
  946. 520 CONTINUE
  947. DO 530 J = I + KBT + 1, MIN( N, I+KA )
  948. AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
  949. $ DCONJG( BB( I-K+KB1, K ) )*
  950. $ AB( I-J+KA1, J )
  951. 530 CONTINUE
  952. 540 CONTINUE
  953. DO 560 J = I1, I
  954. DO 550 K = I + 1, MIN( J+KA, I+KBT )
  955. AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
  956. $ BB( I-K+KB1, K )*AB( J-I+KA1, I )
  957. 550 CONTINUE
  958. 560 CONTINUE
  959. *
  960. IF( WANTX ) THEN
  961. *
  962. * post-multiply X by inv(S(i))
  963. *
  964. CALL ZDSCAL( NX, ONE / BII, X( 1, I ), 1 )
  965. IF( KBT.GT.0 )
  966. $ CALL ZGERU( NX, KBT, -CONE, X( 1, I ), 1,
  967. $ BB( KB, I+1 ), LDBB-1, X( 1, I+1 ), LDX )
  968. END IF
  969. *
  970. * store a(i1,i) in RA1 for use in next loop over K
  971. *
  972. RA1 = AB( I1-I+KA1, I )
  973. END IF
  974. *
  975. * Generate and apply vectors of rotations to chase all the
  976. * existing bulges KA positions up toward the top of the band
  977. *
  978. DO 610 K = 1, KB - 1
  979. IF( UPDATE ) THEN
  980. *
  981. * Determine the rotations which would annihilate the bulge
  982. * which has in theory just been created
  983. *
  984. IF( I+K-KA1.GT.0 .AND. I+K.LT.M ) THEN
  985. *
  986. * generate rotation to annihilate a(i+k-ka-1,i)
  987. *
  988. CALL ZLARTG( AB( K+1, I ), RA1, RWORK( I+K-KA ),
  989. $ WORK( I+K-KA ), RA )
  990. *
  991. * create nonzero element a(i+k-ka-1,i+k) outside the
  992. * band and store it in WORK(m-kb+i+k)
  993. *
  994. T = -BB( KB1-K, I+K )*RA1
  995. WORK( M-KB+I+K ) = RWORK( I+K-KA )*T -
  996. $ DCONJG( WORK( I+K-KA ) )*
  997. $ AB( 1, I+K )
  998. AB( 1, I+K ) = WORK( I+K-KA )*T +
  999. $ RWORK( I+K-KA )*AB( 1, I+K )
  1000. RA1 = RA
  1001. END IF
  1002. END IF
  1003. J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
  1004. NR = ( J2+KA-1 ) / KA1
  1005. J1 = J2 - ( NR-1 )*KA1
  1006. IF( UPDATE ) THEN
  1007. J2T = MIN( J2, I-2*KA+K-1 )
  1008. ELSE
  1009. J2T = J2
  1010. END IF
  1011. NRT = ( J2T+KA-1 ) / KA1
  1012. DO 570 J = J1, J2T, KA1
  1013. *
  1014. * create nonzero element a(j-1,j+ka) outside the band
  1015. * and store it in WORK(j)
  1016. *
  1017. WORK( J ) = WORK( J )*AB( 1, J+KA-1 )
  1018. AB( 1, J+KA-1 ) = RWORK( J )*AB( 1, J+KA-1 )
  1019. 570 CONTINUE
  1020. *
  1021. * generate rotations in 1st set to annihilate elements which
  1022. * have been created outside the band
  1023. *
  1024. IF( NRT.GT.0 )
  1025. $ CALL ZLARGV( NRT, AB( 1, J1+KA ), INCA, WORK( J1 ), KA1,
  1026. $ RWORK( J1 ), KA1 )
  1027. IF( NR.GT.0 ) THEN
  1028. *
  1029. * apply rotations in 1st set from the left
  1030. *
  1031. DO 580 L = 1, KA - 1
  1032. CALL ZLARTV( NR, AB( KA1-L, J1+L ), INCA,
  1033. $ AB( KA-L, J1+L ), INCA, RWORK( J1 ),
  1034. $ WORK( J1 ), KA1 )
  1035. 580 CONTINUE
  1036. *
  1037. * apply rotations in 1st set from both sides to diagonal
  1038. * blocks
  1039. *
  1040. CALL ZLAR2V( NR, AB( KA1, J1 ), AB( KA1, J1-1 ),
  1041. $ AB( KA, J1 ), INCA, RWORK( J1 ), WORK( J1 ),
  1042. $ KA1 )
  1043. *
  1044. CALL ZLACGV( NR, WORK( J1 ), KA1 )
  1045. END IF
  1046. *
  1047. * start applying rotations in 1st set from the right
  1048. *
  1049. DO 590 L = KA - 1, KB - K + 1, -1
  1050. NRT = ( J2+L-1 ) / KA1
  1051. J1T = J2 - ( NRT-1 )*KA1
  1052. IF( NRT.GT.0 )
  1053. $ CALL ZLARTV( NRT, AB( L, J1T ), INCA,
  1054. $ AB( L+1, J1T-1 ), INCA, RWORK( J1T ),
  1055. $ WORK( J1T ), KA1 )
  1056. 590 CONTINUE
  1057. *
  1058. IF( WANTX ) THEN
  1059. *
  1060. * post-multiply X by product of rotations in 1st set
  1061. *
  1062. DO 600 J = J1, J2, KA1
  1063. CALL ZROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
  1064. $ RWORK( J ), WORK( J ) )
  1065. 600 CONTINUE
  1066. END IF
  1067. 610 CONTINUE
  1068. *
  1069. IF( UPDATE ) THEN
  1070. IF( I2.GT.0 .AND. KBT.GT.0 ) THEN
  1071. *
  1072. * create nonzero element a(i+kbt-ka-1,i+kbt) outside the
  1073. * band and store it in WORK(m-kb+i+kbt)
  1074. *
  1075. WORK( M-KB+I+KBT ) = -BB( KB1-KBT, I+KBT )*RA1
  1076. END IF
  1077. END IF
  1078. *
  1079. DO 650 K = KB, 1, -1
  1080. IF( UPDATE ) THEN
  1081. J2 = I + K + 1 - MAX( 2, K+I0-M )*KA1
  1082. ELSE
  1083. J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
  1084. END IF
  1085. *
  1086. * finish applying rotations in 2nd set from the right
  1087. *
  1088. DO 620 L = KB - K, 1, -1
  1089. NRT = ( J2+KA+L-1 ) / KA1
  1090. J1T = J2 - ( NRT-1 )*KA1
  1091. IF( NRT.GT.0 )
  1092. $ CALL ZLARTV( NRT, AB( L, J1T+KA ), INCA,
  1093. $ AB( L+1, J1T+KA-1 ), INCA,
  1094. $ RWORK( M-KB+J1T+KA ),
  1095. $ WORK( M-KB+J1T+KA ), KA1 )
  1096. 620 CONTINUE
  1097. NR = ( J2+KA-1 ) / KA1
  1098. J1 = J2 - ( NR-1 )*KA1
  1099. DO 630 J = J1, J2, KA1
  1100. WORK( M-KB+J ) = WORK( M-KB+J+KA )
  1101. RWORK( M-KB+J ) = RWORK( M-KB+J+KA )
  1102. 630 CONTINUE
  1103. DO 640 J = J1, J2, KA1
  1104. *
  1105. * create nonzero element a(j-1,j+ka) outside the band
  1106. * and store it in WORK(m-kb+j)
  1107. *
  1108. WORK( M-KB+J ) = WORK( M-KB+J )*AB( 1, J+KA-1 )
  1109. AB( 1, J+KA-1 ) = RWORK( M-KB+J )*AB( 1, J+KA-1 )
  1110. 640 CONTINUE
  1111. IF( UPDATE ) THEN
  1112. IF( I+K.GT.KA1 .AND. K.LE.KBT )
  1113. $ WORK( M-KB+I+K-KA ) = WORK( M-KB+I+K )
  1114. END IF
  1115. 650 CONTINUE
  1116. *
  1117. DO 690 K = KB, 1, -1
  1118. J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
  1119. NR = ( J2+KA-1 ) / KA1
  1120. J1 = J2 - ( NR-1 )*KA1
  1121. IF( NR.GT.0 ) THEN
  1122. *
  1123. * generate rotations in 2nd set to annihilate elements
  1124. * which have been created outside the band
  1125. *
  1126. CALL ZLARGV( NR, AB( 1, J1+KA ), INCA, WORK( M-KB+J1 ),
  1127. $ KA1, RWORK( M-KB+J1 ), KA1 )
  1128. *
  1129. * apply rotations in 2nd set from the left
  1130. *
  1131. DO 660 L = 1, KA - 1
  1132. CALL ZLARTV( NR, AB( KA1-L, J1+L ), INCA,
  1133. $ AB( KA-L, J1+L ), INCA, RWORK( M-KB+J1 ),
  1134. $ WORK( M-KB+J1 ), KA1 )
  1135. 660 CONTINUE
  1136. *
  1137. * apply rotations in 2nd set from both sides to diagonal
  1138. * blocks
  1139. *
  1140. CALL ZLAR2V( NR, AB( KA1, J1 ), AB( KA1, J1-1 ),
  1141. $ AB( KA, J1 ), INCA, RWORK( M-KB+J1 ),
  1142. $ WORK( M-KB+J1 ), KA1 )
  1143. *
  1144. CALL ZLACGV( NR, WORK( M-KB+J1 ), KA1 )
  1145. END IF
  1146. *
  1147. * start applying rotations in 2nd set from the right
  1148. *
  1149. DO 670 L = KA - 1, KB - K + 1, -1
  1150. NRT = ( J2+L-1 ) / KA1
  1151. J1T = J2 - ( NRT-1 )*KA1
  1152. IF( NRT.GT.0 )
  1153. $ CALL ZLARTV( NRT, AB( L, J1T ), INCA,
  1154. $ AB( L+1, J1T-1 ), INCA,
  1155. $ RWORK( M-KB+J1T ), WORK( M-KB+J1T ),
  1156. $ KA1 )
  1157. 670 CONTINUE
  1158. *
  1159. IF( WANTX ) THEN
  1160. *
  1161. * post-multiply X by product of rotations in 2nd set
  1162. *
  1163. DO 680 J = J1, J2, KA1
  1164. CALL ZROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
  1165. $ RWORK( M-KB+J ), WORK( M-KB+J ) )
  1166. 680 CONTINUE
  1167. END IF
  1168. 690 CONTINUE
  1169. *
  1170. DO 710 K = 1, KB - 1
  1171. J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
  1172. *
  1173. * finish applying rotations in 1st set from the right
  1174. *
  1175. DO 700 L = KB - K, 1, -1
  1176. NRT = ( J2+L-1 ) / KA1
  1177. J1T = J2 - ( NRT-1 )*KA1
  1178. IF( NRT.GT.0 )
  1179. $ CALL ZLARTV( NRT, AB( L, J1T ), INCA,
  1180. $ AB( L+1, J1T-1 ), INCA, RWORK( J1T ),
  1181. $ WORK( J1T ), KA1 )
  1182. 700 CONTINUE
  1183. 710 CONTINUE
  1184. *
  1185. IF( KB.GT.1 ) THEN
  1186. DO 720 J = 2, I2 - KA
  1187. RWORK( J ) = RWORK( J+KA )
  1188. WORK( J ) = WORK( J+KA )
  1189. 720 CONTINUE
  1190. END IF
  1191. *
  1192. ELSE
  1193. *
  1194. * Transform A, working with the lower triangle
  1195. *
  1196. IF( UPDATE ) THEN
  1197. *
  1198. * Form inv(S(i))**H * A * inv(S(i))
  1199. *
  1200. BII = DBLE( BB( 1, I ) )
  1201. AB( 1, I ) = ( DBLE( AB( 1, I ) ) / BII ) / BII
  1202. DO 730 J = I1, I - 1
  1203. AB( I-J+1, J ) = AB( I-J+1, J ) / BII
  1204. 730 CONTINUE
  1205. DO 740 J = I + 1, MIN( N, I+KA )
  1206. AB( J-I+1, I ) = AB( J-I+1, I ) / BII
  1207. 740 CONTINUE
  1208. DO 770 K = I + 1, I + KBT
  1209. DO 750 J = K, I + KBT
  1210. AB( J-K+1, K ) = AB( J-K+1, K ) -
  1211. $ BB( J-I+1, I )*DCONJG( AB( K-I+1,
  1212. $ I ) ) - DCONJG( BB( K-I+1, I ) )*
  1213. $ AB( J-I+1, I ) + DBLE( AB( 1, I ) )*
  1214. $ BB( J-I+1, I )*DCONJG( BB( K-I+1,
  1215. $ I ) )
  1216. 750 CONTINUE
  1217. DO 760 J = I + KBT + 1, MIN( N, I+KA )
  1218. AB( J-K+1, K ) = AB( J-K+1, K ) -
  1219. $ DCONJG( BB( K-I+1, I ) )*
  1220. $ AB( J-I+1, I )
  1221. 760 CONTINUE
  1222. 770 CONTINUE
  1223. DO 790 J = I1, I
  1224. DO 780 K = I + 1, MIN( J+KA, I+KBT )
  1225. AB( K-J+1, J ) = AB( K-J+1, J ) -
  1226. $ BB( K-I+1, I )*AB( I-J+1, J )
  1227. 780 CONTINUE
  1228. 790 CONTINUE
  1229. *
  1230. IF( WANTX ) THEN
  1231. *
  1232. * post-multiply X by inv(S(i))
  1233. *
  1234. CALL ZDSCAL( NX, ONE / BII, X( 1, I ), 1 )
  1235. IF( KBT.GT.0 )
  1236. $ CALL ZGERC( NX, KBT, -CONE, X( 1, I ), 1, BB( 2, I ),
  1237. $ 1, X( 1, I+1 ), LDX )
  1238. END IF
  1239. *
  1240. * store a(i,i1) in RA1 for use in next loop over K
  1241. *
  1242. RA1 = AB( I-I1+1, I1 )
  1243. END IF
  1244. *
  1245. * Generate and apply vectors of rotations to chase all the
  1246. * existing bulges KA positions up toward the top of the band
  1247. *
  1248. DO 840 K = 1, KB - 1
  1249. IF( UPDATE ) THEN
  1250. *
  1251. * Determine the rotations which would annihilate the bulge
  1252. * which has in theory just been created
  1253. *
  1254. IF( I+K-KA1.GT.0 .AND. I+K.LT.M ) THEN
  1255. *
  1256. * generate rotation to annihilate a(i,i+k-ka-1)
  1257. *
  1258. CALL ZLARTG( AB( KA1-K, I+K-KA ), RA1,
  1259. $ RWORK( I+K-KA ), WORK( I+K-KA ), RA )
  1260. *
  1261. * create nonzero element a(i+k,i+k-ka-1) outside the
  1262. * band and store it in WORK(m-kb+i+k)
  1263. *
  1264. T = -BB( K+1, I )*RA1
  1265. WORK( M-KB+I+K ) = RWORK( I+K-KA )*T -
  1266. $ DCONJG( WORK( I+K-KA ) )*
  1267. $ AB( KA1, I+K-KA )
  1268. AB( KA1, I+K-KA ) = WORK( I+K-KA )*T +
  1269. $ RWORK( I+K-KA )*AB( KA1, I+K-KA )
  1270. RA1 = RA
  1271. END IF
  1272. END IF
  1273. J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
  1274. NR = ( J2+KA-1 ) / KA1
  1275. J1 = J2 - ( NR-1 )*KA1
  1276. IF( UPDATE ) THEN
  1277. J2T = MIN( J2, I-2*KA+K-1 )
  1278. ELSE
  1279. J2T = J2
  1280. END IF
  1281. NRT = ( J2T+KA-1 ) / KA1
  1282. DO 800 J = J1, J2T, KA1
  1283. *
  1284. * create nonzero element a(j+ka,j-1) outside the band
  1285. * and store it in WORK(j)
  1286. *
  1287. WORK( J ) = WORK( J )*AB( KA1, J-1 )
  1288. AB( KA1, J-1 ) = RWORK( J )*AB( KA1, J-1 )
  1289. 800 CONTINUE
  1290. *
  1291. * generate rotations in 1st set to annihilate elements which
  1292. * have been created outside the band
  1293. *
  1294. IF( NRT.GT.0 )
  1295. $ CALL ZLARGV( NRT, AB( KA1, J1 ), INCA, WORK( J1 ), KA1,
  1296. $ RWORK( J1 ), KA1 )
  1297. IF( NR.GT.0 ) THEN
  1298. *
  1299. * apply rotations in 1st set from the right
  1300. *
  1301. DO 810 L = 1, KA - 1
  1302. CALL ZLARTV( NR, AB( L+1, J1 ), INCA, AB( L+2, J1-1 ),
  1303. $ INCA, RWORK( J1 ), WORK( J1 ), KA1 )
  1304. 810 CONTINUE
  1305. *
  1306. * apply rotations in 1st set from both sides to diagonal
  1307. * blocks
  1308. *
  1309. CALL ZLAR2V( NR, AB( 1, J1 ), AB( 1, J1-1 ),
  1310. $ AB( 2, J1-1 ), INCA, RWORK( J1 ),
  1311. $ WORK( J1 ), KA1 )
  1312. *
  1313. CALL ZLACGV( NR, WORK( J1 ), KA1 )
  1314. END IF
  1315. *
  1316. * start applying rotations in 1st set from the left
  1317. *
  1318. DO 820 L = KA - 1, KB - K + 1, -1
  1319. NRT = ( J2+L-1 ) / KA1
  1320. J1T = J2 - ( NRT-1 )*KA1
  1321. IF( NRT.GT.0 )
  1322. $ CALL ZLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
  1323. $ AB( KA1-L, J1T-KA1+L ), INCA,
  1324. $ RWORK( J1T ), WORK( J1T ), KA1 )
  1325. 820 CONTINUE
  1326. *
  1327. IF( WANTX ) THEN
  1328. *
  1329. * post-multiply X by product of rotations in 1st set
  1330. *
  1331. DO 830 J = J1, J2, KA1
  1332. CALL ZROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
  1333. $ RWORK( J ), DCONJG( WORK( J ) ) )
  1334. 830 CONTINUE
  1335. END IF
  1336. 840 CONTINUE
  1337. *
  1338. IF( UPDATE ) THEN
  1339. IF( I2.GT.0 .AND. KBT.GT.0 ) THEN
  1340. *
  1341. * create nonzero element a(i+kbt,i+kbt-ka-1) outside the
  1342. * band and store it in WORK(m-kb+i+kbt)
  1343. *
  1344. WORK( M-KB+I+KBT ) = -BB( KBT+1, I )*RA1
  1345. END IF
  1346. END IF
  1347. *
  1348. DO 880 K = KB, 1, -1
  1349. IF( UPDATE ) THEN
  1350. J2 = I + K + 1 - MAX( 2, K+I0-M )*KA1
  1351. ELSE
  1352. J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
  1353. END IF
  1354. *
  1355. * finish applying rotations in 2nd set from the left
  1356. *
  1357. DO 850 L = KB - K, 1, -1
  1358. NRT = ( J2+KA+L-1 ) / KA1
  1359. J1T = J2 - ( NRT-1 )*KA1
  1360. IF( NRT.GT.0 )
  1361. $ CALL ZLARTV( NRT, AB( KA1-L+1, J1T+L-1 ), INCA,
  1362. $ AB( KA1-L, J1T+L-1 ), INCA,
  1363. $ RWORK( M-KB+J1T+KA ),
  1364. $ WORK( M-KB+J1T+KA ), KA1 )
  1365. 850 CONTINUE
  1366. NR = ( J2+KA-1 ) / KA1
  1367. J1 = J2 - ( NR-1 )*KA1
  1368. DO 860 J = J1, J2, KA1
  1369. WORK( M-KB+J ) = WORK( M-KB+J+KA )
  1370. RWORK( M-KB+J ) = RWORK( M-KB+J+KA )
  1371. 860 CONTINUE
  1372. DO 870 J = J1, J2, KA1
  1373. *
  1374. * create nonzero element a(j+ka,j-1) outside the band
  1375. * and store it in WORK(m-kb+j)
  1376. *
  1377. WORK( M-KB+J ) = WORK( M-KB+J )*AB( KA1, J-1 )
  1378. AB( KA1, J-1 ) = RWORK( M-KB+J )*AB( KA1, J-1 )
  1379. 870 CONTINUE
  1380. IF( UPDATE ) THEN
  1381. IF( I+K.GT.KA1 .AND. K.LE.KBT )
  1382. $ WORK( M-KB+I+K-KA ) = WORK( M-KB+I+K )
  1383. END IF
  1384. 880 CONTINUE
  1385. *
  1386. DO 920 K = KB, 1, -1
  1387. J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
  1388. NR = ( J2+KA-1 ) / KA1
  1389. J1 = J2 - ( NR-1 )*KA1
  1390. IF( NR.GT.0 ) THEN
  1391. *
  1392. * generate rotations in 2nd set to annihilate elements
  1393. * which have been created outside the band
  1394. *
  1395. CALL ZLARGV( NR, AB( KA1, J1 ), INCA, WORK( M-KB+J1 ),
  1396. $ KA1, RWORK( M-KB+J1 ), KA1 )
  1397. *
  1398. * apply rotations in 2nd set from the right
  1399. *
  1400. DO 890 L = 1, KA - 1
  1401. CALL ZLARTV( NR, AB( L+1, J1 ), INCA, AB( L+2, J1-1 ),
  1402. $ INCA, RWORK( M-KB+J1 ), WORK( M-KB+J1 ),
  1403. $ KA1 )
  1404. 890 CONTINUE
  1405. *
  1406. * apply rotations in 2nd set from both sides to diagonal
  1407. * blocks
  1408. *
  1409. CALL ZLAR2V( NR, AB( 1, J1 ), AB( 1, J1-1 ),
  1410. $ AB( 2, J1-1 ), INCA, RWORK( M-KB+J1 ),
  1411. $ WORK( M-KB+J1 ), KA1 )
  1412. *
  1413. CALL ZLACGV( NR, WORK( M-KB+J1 ), KA1 )
  1414. END IF
  1415. *
  1416. * start applying rotations in 2nd set from the left
  1417. *
  1418. DO 900 L = KA - 1, KB - K + 1, -1
  1419. NRT = ( J2+L-1 ) / KA1
  1420. J1T = J2 - ( NRT-1 )*KA1
  1421. IF( NRT.GT.0 )
  1422. $ CALL ZLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
  1423. $ AB( KA1-L, J1T-KA1+L ), INCA,
  1424. $ RWORK( M-KB+J1T ), WORK( M-KB+J1T ),
  1425. $ KA1 )
  1426. 900 CONTINUE
  1427. *
  1428. IF( WANTX ) THEN
  1429. *
  1430. * post-multiply X by product of rotations in 2nd set
  1431. *
  1432. DO 910 J = J1, J2, KA1
  1433. CALL ZROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
  1434. $ RWORK( M-KB+J ), DCONJG( WORK( M-KB+J ) ) )
  1435. 910 CONTINUE
  1436. END IF
  1437. 920 CONTINUE
  1438. *
  1439. DO 940 K = 1, KB - 1
  1440. J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
  1441. *
  1442. * finish applying rotations in 1st set from the left
  1443. *
  1444. DO 930 L = KB - K, 1, -1
  1445. NRT = ( J2+L-1 ) / KA1
  1446. J1T = J2 - ( NRT-1 )*KA1
  1447. IF( NRT.GT.0 )
  1448. $ CALL ZLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
  1449. $ AB( KA1-L, J1T-KA1+L ), INCA,
  1450. $ RWORK( J1T ), WORK( J1T ), KA1 )
  1451. 930 CONTINUE
  1452. 940 CONTINUE
  1453. *
  1454. IF( KB.GT.1 ) THEN
  1455. DO 950 J = 2, I2 - KA
  1456. RWORK( J ) = RWORK( J+KA )
  1457. WORK( J ) = WORK( J+KA )
  1458. 950 CONTINUE
  1459. END IF
  1460. *
  1461. END IF
  1462. *
  1463. GO TO 490
  1464. *
  1465. * End of ZHBGST
  1466. *
  1467. END