You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssyrfsx.f 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697
  1. *> \brief \b SSYRFSX
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSYRFSX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyrfsx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyrfsx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyrfsx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
  22. * S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
  23. * ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
  24. * WORK, IWORK, INFO )
  25. *
  26. * .. Scalar Arguments ..
  27. * CHARACTER UPLO, EQUED
  28. * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
  29. * $ N_ERR_BNDS
  30. * REAL RCOND
  31. * ..
  32. * .. Array Arguments ..
  33. * INTEGER IPIV( * ), IWORK( * )
  34. * REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  35. * $ X( LDX, * ), WORK( * )
  36. * REAL S( * ), PARAMS( * ), BERR( * ),
  37. * $ ERR_BNDS_NORM( NRHS, * ),
  38. * $ ERR_BNDS_COMP( NRHS, * )
  39. * ..
  40. *
  41. *
  42. *> \par Purpose:
  43. * =============
  44. *>
  45. *> \verbatim
  46. *>
  47. *> SSYRFSX improves the computed solution to a system of linear
  48. *> equations when the coefficient matrix is symmetric indefinite, and
  49. *> provides error bounds and backward error estimates for the
  50. *> solution. In addition to normwise error bound, the code provides
  51. *> maximum componentwise error bound if possible. See comments for
  52. *> ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds.
  53. *>
  54. *> The original system of linear equations may have been equilibrated
  55. *> before calling this routine, as described by arguments EQUED and S
  56. *> below. In this case, the solution and error bounds returned are
  57. *> for the original unequilibrated system.
  58. *> \endverbatim
  59. *
  60. * Arguments:
  61. * ==========
  62. *
  63. *> \verbatim
  64. *> Some optional parameters are bundled in the PARAMS array. These
  65. *> settings determine how refinement is performed, but often the
  66. *> defaults are acceptable. If the defaults are acceptable, users
  67. *> can pass NPARAMS = 0 which prevents the source code from accessing
  68. *> the PARAMS argument.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] UPLO
  72. *> \verbatim
  73. *> UPLO is CHARACTER*1
  74. *> = 'U': Upper triangle of A is stored;
  75. *> = 'L': Lower triangle of A is stored.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] EQUED
  79. *> \verbatim
  80. *> EQUED is CHARACTER*1
  81. *> Specifies the form of equilibration that was done to A
  82. *> before calling this routine. This is needed to compute
  83. *> the solution and error bounds correctly.
  84. *> = 'N': No equilibration
  85. *> = 'Y': Both row and column equilibration, i.e., A has been
  86. *> replaced by diag(S) * A * diag(S).
  87. *> The right hand side B has been changed accordingly.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] N
  91. *> \verbatim
  92. *> N is INTEGER
  93. *> The order of the matrix A. N >= 0.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] NRHS
  97. *> \verbatim
  98. *> NRHS is INTEGER
  99. *> The number of right hand sides, i.e., the number of columns
  100. *> of the matrices B and X. NRHS >= 0.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] A
  104. *> \verbatim
  105. *> A is REAL array, dimension (LDA,N)
  106. *> The symmetric matrix A. If UPLO = 'U', the leading N-by-N
  107. *> upper triangular part of A contains the upper triangular
  108. *> part of the matrix A, and the strictly lower triangular
  109. *> part of A is not referenced. If UPLO = 'L', the leading
  110. *> N-by-N lower triangular part of A contains the lower
  111. *> triangular part of the matrix A, and the strictly upper
  112. *> triangular part of A is not referenced.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] LDA
  116. *> \verbatim
  117. *> LDA is INTEGER
  118. *> The leading dimension of the array A. LDA >= max(1,N).
  119. *> \endverbatim
  120. *>
  121. *> \param[in] AF
  122. *> \verbatim
  123. *> AF is REAL array, dimension (LDAF,N)
  124. *> The factored form of the matrix A. AF contains the block
  125. *> diagonal matrix D and the multipliers used to obtain the
  126. *> factor U or L from the factorization A = U*D*U**T or A =
  127. *> L*D*L**T as computed by SSYTRF.
  128. *> \endverbatim
  129. *>
  130. *> \param[in] LDAF
  131. *> \verbatim
  132. *> LDAF is INTEGER
  133. *> The leading dimension of the array AF. LDAF >= max(1,N).
  134. *> \endverbatim
  135. *>
  136. *> \param[in] IPIV
  137. *> \verbatim
  138. *> IPIV is INTEGER array, dimension (N)
  139. *> Details of the interchanges and the block structure of D
  140. *> as determined by SSYTRF.
  141. *> \endverbatim
  142. *>
  143. *> \param[in,out] S
  144. *> \verbatim
  145. *> S is REAL array, dimension (N)
  146. *> The scale factors for A. If EQUED = 'Y', A is multiplied on
  147. *> the left and right by diag(S). S is an input argument if FACT =
  148. *> 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED
  149. *> = 'Y', each element of S must be positive. If S is output, each
  150. *> element of S is a power of the radix. If S is input, each element
  151. *> of S should be a power of the radix to ensure a reliable solution
  152. *> and error estimates. Scaling by powers of the radix does not cause
  153. *> rounding errors unless the result underflows or overflows.
  154. *> Rounding errors during scaling lead to refining with a matrix that
  155. *> is not equivalent to the input matrix, producing error estimates
  156. *> that may not be reliable.
  157. *> \endverbatim
  158. *>
  159. *> \param[in] B
  160. *> \verbatim
  161. *> B is REAL array, dimension (LDB,NRHS)
  162. *> The right hand side matrix B.
  163. *> \endverbatim
  164. *>
  165. *> \param[in] LDB
  166. *> \verbatim
  167. *> LDB is INTEGER
  168. *> The leading dimension of the array B. LDB >= max(1,N).
  169. *> \endverbatim
  170. *>
  171. *> \param[in,out] X
  172. *> \verbatim
  173. *> X is REAL array, dimension (LDX,NRHS)
  174. *> On entry, the solution matrix X, as computed by SGETRS.
  175. *> On exit, the improved solution matrix X.
  176. *> \endverbatim
  177. *>
  178. *> \param[in] LDX
  179. *> \verbatim
  180. *> LDX is INTEGER
  181. *> The leading dimension of the array X. LDX >= max(1,N).
  182. *> \endverbatim
  183. *>
  184. *> \param[out] RCOND
  185. *> \verbatim
  186. *> RCOND is REAL
  187. *> Reciprocal scaled condition number. This is an estimate of the
  188. *> reciprocal Skeel condition number of the matrix A after
  189. *> equilibration (if done). If this is less than the machine
  190. *> precision (in particular, if it is zero), the matrix is singular
  191. *> to working precision. Note that the error may still be small even
  192. *> if this number is very small and the matrix appears ill-
  193. *> conditioned.
  194. *> \endverbatim
  195. *>
  196. *> \param[out] BERR
  197. *> \verbatim
  198. *> BERR is REAL array, dimension (NRHS)
  199. *> Componentwise relative backward error. This is the
  200. *> componentwise relative backward error of each solution vector X(j)
  201. *> (i.e., the smallest relative change in any element of A or B that
  202. *> makes X(j) an exact solution).
  203. *> \endverbatim
  204. *>
  205. *> \param[in] N_ERR_BNDS
  206. *> \verbatim
  207. *> N_ERR_BNDS is INTEGER
  208. *> Number of error bounds to return for each right hand side
  209. *> and each type (normwise or componentwise). See ERR_BNDS_NORM and
  210. *> ERR_BNDS_COMP below.
  211. *> \endverbatim
  212. *>
  213. *> \param[out] ERR_BNDS_NORM
  214. *> \verbatim
  215. *> ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
  216. *> For each right-hand side, this array contains information about
  217. *> various error bounds and condition numbers corresponding to the
  218. *> normwise relative error, which is defined as follows:
  219. *>
  220. *> Normwise relative error in the ith solution vector:
  221. *> max_j (abs(XTRUE(j,i) - X(j,i)))
  222. *> ------------------------------
  223. *> max_j abs(X(j,i))
  224. *>
  225. *> The array is indexed by the type of error information as described
  226. *> below. There currently are up to three pieces of information
  227. *> returned.
  228. *>
  229. *> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  230. *> right-hand side.
  231. *>
  232. *> The second index in ERR_BNDS_NORM(:,err) contains the following
  233. *> three fields:
  234. *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
  235. *> reciprocal condition number is less than the threshold
  236. *> sqrt(n) * slamch('Epsilon').
  237. *>
  238. *> err = 2 "Guaranteed" error bound: The estimated forward error,
  239. *> almost certainly within a factor of 10 of the true error
  240. *> so long as the next entry is greater than the threshold
  241. *> sqrt(n) * slamch('Epsilon'). This error bound should only
  242. *> be trusted if the previous boolean is true.
  243. *>
  244. *> err = 3 Reciprocal condition number: Estimated normwise
  245. *> reciprocal condition number. Compared with the threshold
  246. *> sqrt(n) * slamch('Epsilon') to determine if the error
  247. *> estimate is "guaranteed". These reciprocal condition
  248. *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  249. *> appropriately scaled matrix Z.
  250. *> Let Z = S*A, where S scales each row by a power of the
  251. *> radix so all absolute row sums of Z are approximately 1.
  252. *>
  253. *> See Lapack Working Note 165 for further details and extra
  254. *> cautions.
  255. *> \endverbatim
  256. *>
  257. *> \param[out] ERR_BNDS_COMP
  258. *> \verbatim
  259. *> ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
  260. *> For each right-hand side, this array contains information about
  261. *> various error bounds and condition numbers corresponding to the
  262. *> componentwise relative error, which is defined as follows:
  263. *>
  264. *> Componentwise relative error in the ith solution vector:
  265. *> abs(XTRUE(j,i) - X(j,i))
  266. *> max_j ----------------------
  267. *> abs(X(j,i))
  268. *>
  269. *> The array is indexed by the right-hand side i (on which the
  270. *> componentwise relative error depends), and the type of error
  271. *> information as described below. There currently are up to three
  272. *> pieces of information returned for each right-hand side. If
  273. *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  274. *> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most
  275. *> the first (:,N_ERR_BNDS) entries are returned.
  276. *>
  277. *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  278. *> right-hand side.
  279. *>
  280. *> The second index in ERR_BNDS_COMP(:,err) contains the following
  281. *> three fields:
  282. *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
  283. *> reciprocal condition number is less than the threshold
  284. *> sqrt(n) * slamch('Epsilon').
  285. *>
  286. *> err = 2 "Guaranteed" error bound: The estimated forward error,
  287. *> almost certainly within a factor of 10 of the true error
  288. *> so long as the next entry is greater than the threshold
  289. *> sqrt(n) * slamch('Epsilon'). This error bound should only
  290. *> be trusted if the previous boolean is true.
  291. *>
  292. *> err = 3 Reciprocal condition number: Estimated componentwise
  293. *> reciprocal condition number. Compared with the threshold
  294. *> sqrt(n) * slamch('Epsilon') to determine if the error
  295. *> estimate is "guaranteed". These reciprocal condition
  296. *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  297. *> appropriately scaled matrix Z.
  298. *> Let Z = S*(A*diag(x)), where x is the solution for the
  299. *> current right-hand side and S scales each row of
  300. *> A*diag(x) by a power of the radix so all absolute row
  301. *> sums of Z are approximately 1.
  302. *>
  303. *> See Lapack Working Note 165 for further details and extra
  304. *> cautions.
  305. *> \endverbatim
  306. *>
  307. *> \param[in] NPARAMS
  308. *> \verbatim
  309. *> NPARAMS is INTEGER
  310. *> Specifies the number of parameters set in PARAMS. If <= 0, the
  311. *> PARAMS array is never referenced and default values are used.
  312. *> \endverbatim
  313. *>
  314. *> \param[in,out] PARAMS
  315. *> \verbatim
  316. *> PARAMS is REAL array, dimension NPARAMS
  317. *> Specifies algorithm parameters. If an entry is < 0.0, then
  318. *> that entry will be filled with default value used for that
  319. *> parameter. Only positions up to NPARAMS are accessed; defaults
  320. *> are used for higher-numbered parameters.
  321. *>
  322. *> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
  323. *> refinement or not.
  324. *> Default: 1.0
  325. *> = 0.0: No refinement is performed, and no error bounds are
  326. *> computed.
  327. *> = 1.0: Use the double-precision refinement algorithm,
  328. *> possibly with doubled-single computations if the
  329. *> compilation environment does not support DOUBLE
  330. *> PRECISION.
  331. *> (other values are reserved for future use)
  332. *>
  333. *> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
  334. *> computations allowed for refinement.
  335. *> Default: 10
  336. *> Aggressive: Set to 100 to permit convergence using approximate
  337. *> factorizations or factorizations other than LU. If
  338. *> the factorization uses a technique other than
  339. *> Gaussian elimination, the guarantees in
  340. *> err_bnds_norm and err_bnds_comp may no longer be
  341. *> trustworthy.
  342. *>
  343. *> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
  344. *> will attempt to find a solution with small componentwise
  345. *> relative error in the double-precision algorithm. Positive
  346. *> is true, 0.0 is false.
  347. *> Default: 1.0 (attempt componentwise convergence)
  348. *> \endverbatim
  349. *>
  350. *> \param[out] WORK
  351. *> \verbatim
  352. *> WORK is REAL array, dimension (4*N)
  353. *> \endverbatim
  354. *>
  355. *> \param[out] IWORK
  356. *> \verbatim
  357. *> IWORK is INTEGER array, dimension (N)
  358. *> \endverbatim
  359. *>
  360. *> \param[out] INFO
  361. *> \verbatim
  362. *> INFO is INTEGER
  363. *> = 0: Successful exit. The solution to every right-hand side is
  364. *> guaranteed.
  365. *> < 0: If INFO = -i, the i-th argument had an illegal value
  366. *> > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
  367. *> has been completed, but the factor U is exactly singular, so
  368. *> the solution and error bounds could not be computed. RCOND = 0
  369. *> is returned.
  370. *> = N+J: The solution corresponding to the Jth right-hand side is
  371. *> not guaranteed. The solutions corresponding to other right-
  372. *> hand sides K with K > J may not be guaranteed as well, but
  373. *> only the first such right-hand side is reported. If a small
  374. *> componentwise error is not requested (PARAMS(3) = 0.0) then
  375. *> the Jth right-hand side is the first with a normwise error
  376. *> bound that is not guaranteed (the smallest J such
  377. *> that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
  378. *> the Jth right-hand side is the first with either a normwise or
  379. *> componentwise error bound that is not guaranteed (the smallest
  380. *> J such that either ERR_BNDS_NORM(J,1) = 0.0 or
  381. *> ERR_BNDS_COMP(J,1) = 0.0). See the definition of
  382. *> ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
  383. *> about all of the right-hand sides check ERR_BNDS_NORM or
  384. *> ERR_BNDS_COMP.
  385. *> \endverbatim
  386. *
  387. * Authors:
  388. * ========
  389. *
  390. *> \author Univ. of Tennessee
  391. *> \author Univ. of California Berkeley
  392. *> \author Univ. of Colorado Denver
  393. *> \author NAG Ltd.
  394. *
  395. *> \ingroup realSYcomputational
  396. *
  397. * =====================================================================
  398. SUBROUTINE SSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
  399. $ S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
  400. $ ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
  401. $ WORK, IWORK, INFO )
  402. *
  403. * -- LAPACK computational routine --
  404. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  405. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  406. *
  407. * .. Scalar Arguments ..
  408. CHARACTER UPLO, EQUED
  409. INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
  410. $ N_ERR_BNDS
  411. REAL RCOND
  412. * ..
  413. * .. Array Arguments ..
  414. INTEGER IPIV( * ), IWORK( * )
  415. REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  416. $ X( LDX, * ), WORK( * )
  417. REAL S( * ), PARAMS( * ), BERR( * ),
  418. $ ERR_BNDS_NORM( NRHS, * ),
  419. $ ERR_BNDS_COMP( NRHS, * )
  420. * ..
  421. *
  422. * ==================================================================
  423. *
  424. * .. Parameters ..
  425. REAL ZERO, ONE
  426. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  427. REAL ITREF_DEFAULT, ITHRESH_DEFAULT,
  428. $ COMPONENTWISE_DEFAULT
  429. REAL RTHRESH_DEFAULT, DZTHRESH_DEFAULT
  430. PARAMETER ( ITREF_DEFAULT = 1.0 )
  431. PARAMETER ( ITHRESH_DEFAULT = 10.0 )
  432. PARAMETER ( COMPONENTWISE_DEFAULT = 1.0 )
  433. PARAMETER ( RTHRESH_DEFAULT = 0.5 )
  434. PARAMETER ( DZTHRESH_DEFAULT = 0.25 )
  435. INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  436. $ LA_LINRX_CWISE_I
  437. PARAMETER ( LA_LINRX_ITREF_I = 1,
  438. $ LA_LINRX_ITHRESH_I = 2 )
  439. PARAMETER ( LA_LINRX_CWISE_I = 3 )
  440. INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  441. $ LA_LINRX_RCOND_I
  442. PARAMETER ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  443. PARAMETER ( LA_LINRX_RCOND_I = 3 )
  444. * ..
  445. * .. Local Scalars ..
  446. CHARACTER(1) NORM
  447. LOGICAL RCEQU
  448. INTEGER J, PREC_TYPE, REF_TYPE, N_NORMS
  449. REAL ANORM, RCOND_TMP
  450. REAL ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
  451. LOGICAL IGNORE_CWISE
  452. INTEGER ITHRESH
  453. REAL RTHRESH, UNSTABLE_THRESH
  454. * ..
  455. * .. External Subroutines ..
  456. EXTERNAL XERBLA, SSYCON, SLA_SYRFSX_EXTENDED
  457. * ..
  458. * .. Intrinsic Functions ..
  459. INTRINSIC MAX, SQRT
  460. * ..
  461. * .. External Functions ..
  462. EXTERNAL LSAME, ILAPREC
  463. EXTERNAL SLAMCH, SLANSY, SLA_SYRCOND
  464. REAL SLAMCH, SLANSY, SLA_SYRCOND
  465. LOGICAL LSAME
  466. INTEGER ILAPREC
  467. * ..
  468. * .. Executable Statements ..
  469. *
  470. * Check the input parameters.
  471. *
  472. INFO = 0
  473. REF_TYPE = INT( ITREF_DEFAULT )
  474. IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
  475. IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0 ) THEN
  476. PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
  477. ELSE
  478. REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
  479. END IF
  480. END IF
  481. *
  482. * Set default parameters.
  483. *
  484. ILLRCOND_THRESH = REAL( N )*SLAMCH( 'Epsilon' )
  485. ITHRESH = INT( ITHRESH_DEFAULT )
  486. RTHRESH = RTHRESH_DEFAULT
  487. UNSTABLE_THRESH = DZTHRESH_DEFAULT
  488. IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0
  489. *
  490. IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
  491. IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0 ) THEN
  492. PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
  493. ELSE
  494. ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
  495. END IF
  496. END IF
  497. IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
  498. IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0 ) THEN
  499. IF ( IGNORE_CWISE ) THEN
  500. PARAMS( LA_LINRX_CWISE_I ) = 0.0
  501. ELSE
  502. PARAMS( LA_LINRX_CWISE_I ) = 1.0
  503. END IF
  504. ELSE
  505. IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0
  506. END IF
  507. END IF
  508. IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
  509. N_NORMS = 0
  510. ELSE IF ( IGNORE_CWISE ) THEN
  511. N_NORMS = 1
  512. ELSE
  513. N_NORMS = 2
  514. END IF
  515. *
  516. RCEQU = LSAME( EQUED, 'Y' )
  517. *
  518. * Test input parameters.
  519. *
  520. IF ( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  521. INFO = -1
  522. ELSE IF( .NOT.RCEQU .AND. .NOT.LSAME( EQUED, 'N' ) ) THEN
  523. INFO = -2
  524. ELSE IF( N.LT.0 ) THEN
  525. INFO = -3
  526. ELSE IF( NRHS.LT.0 ) THEN
  527. INFO = -4
  528. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  529. INFO = -6
  530. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  531. INFO = -8
  532. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  533. INFO = -12
  534. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  535. INFO = -14
  536. END IF
  537. IF( INFO.NE.0 ) THEN
  538. CALL XERBLA( 'SSYRFSX', -INFO )
  539. RETURN
  540. END IF
  541. *
  542. * Quick return if possible.
  543. *
  544. IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  545. RCOND = 1.0
  546. DO J = 1, NRHS
  547. BERR( J ) = 0.0
  548. IF ( N_ERR_BNDS .GE. 1 ) THEN
  549. ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0
  550. ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0
  551. END IF
  552. IF ( N_ERR_BNDS .GE. 2 ) THEN
  553. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0
  554. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0
  555. END IF
  556. IF ( N_ERR_BNDS .GE. 3 ) THEN
  557. ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0
  558. ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0
  559. END IF
  560. END DO
  561. RETURN
  562. END IF
  563. *
  564. * Default to failure.
  565. *
  566. RCOND = 0.0
  567. DO J = 1, NRHS
  568. BERR( J ) = 1.0
  569. IF ( N_ERR_BNDS .GE. 1 ) THEN
  570. ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0
  571. ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0
  572. END IF
  573. IF ( N_ERR_BNDS .GE. 2 ) THEN
  574. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0
  575. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0
  576. END IF
  577. IF ( N_ERR_BNDS .GE. 3 ) THEN
  578. ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0
  579. ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0
  580. END IF
  581. END DO
  582. *
  583. * Compute the norm of A and the reciprocal of the condition
  584. * number of A.
  585. *
  586. NORM = 'I'
  587. ANORM = SLANSY( NORM, UPLO, N, A, LDA, WORK )
  588. CALL SSYCON( UPLO, N, AF, LDAF, IPIV, ANORM, RCOND, WORK,
  589. $ IWORK, INFO )
  590. *
  591. * Perform refinement on each right-hand side
  592. *
  593. IF ( REF_TYPE .NE. 0 ) THEN
  594. PREC_TYPE = ILAPREC( 'D' )
  595. CALL SLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO, N,
  596. $ NRHS, A, LDA, AF, LDAF, IPIV, RCEQU, S, B,
  597. $ LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP,
  598. $ WORK( N+1 ), WORK( 1 ), WORK( 2*N+1 ), WORK( 1 ), RCOND,
  599. $ ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
  600. $ INFO )
  601. END IF
  602. ERR_LBND = MAX( 10.0, SQRT( REAL( N ) ) )*SLAMCH( 'Epsilon' )
  603. IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1) THEN
  604. *
  605. * Compute scaled normwise condition number cond(A*C).
  606. *
  607. IF ( RCEQU ) THEN
  608. RCOND_TMP = SLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, IPIV,
  609. $ -1, S, INFO, WORK, IWORK )
  610. ELSE
  611. RCOND_TMP = SLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, IPIV,
  612. $ 0, S, INFO, WORK, IWORK )
  613. END IF
  614. DO J = 1, NRHS
  615. *
  616. * Cap the error at 1.0.
  617. *
  618. IF (N_ERR_BNDS .GE. LA_LINRX_ERR_I
  619. $ .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0)
  620. $ ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0
  621. *
  622. * Threshold the error (see LAWN).
  623. *
  624. IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
  625. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0
  626. ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0
  627. IF ( INFO .LE. N ) INFO = N + J
  628. ELSE IF (ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND)
  629. $ THEN
  630. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
  631. ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0
  632. END IF
  633. *
  634. * Save the condition number.
  635. *
  636. IF (N_ERR_BNDS .GE. LA_LINRX_RCOND_I) THEN
  637. ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
  638. END IF
  639. END DO
  640. END IF
  641. IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2 ) THEN
  642. *
  643. * Compute componentwise condition number cond(A*diag(Y(:,J))) for
  644. * each right-hand side using the current solution as an estimate of
  645. * the true solution. If the componentwise error estimate is too
  646. * large, then the solution is a lousy estimate of truth and the
  647. * estimated RCOND may be too optimistic. To avoid misleading users,
  648. * the inverse condition number is set to 0.0 when the estimated
  649. * cwise error is at least CWISE_WRONG.
  650. *
  651. CWISE_WRONG = SQRT( SLAMCH( 'Epsilon' ) )
  652. DO J = 1, NRHS
  653. IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
  654. $ THEN
  655. RCOND_TMP = SLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, IPIV,
  656. $ 1, X(1,J), INFO, WORK, IWORK )
  657. ELSE
  658. RCOND_TMP = 0.0
  659. END IF
  660. *
  661. * Cap the error at 1.0.
  662. *
  663. IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
  664. $ .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0 )
  665. $ ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0
  666. *
  667. * Threshold the error (see LAWN).
  668. *
  669. IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
  670. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0
  671. ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0
  672. IF ( .NOT. IGNORE_CWISE
  673. $ .AND. INFO.LT.N + J ) INFO = N + J
  674. ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
  675. $ .LT. ERR_LBND ) THEN
  676. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
  677. ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0
  678. END IF
  679. *
  680. * Save the condition number.
  681. *
  682. IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
  683. ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
  684. END IF
  685. END DO
  686. END IF
  687. *
  688. RETURN
  689. *
  690. * End of SSYRFSX
  691. *
  692. END