You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sspgv.f 8.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274
  1. *> \brief \b SSPGV
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSPGV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspgv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspgv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspgv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
  22. * INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBZ, UPLO
  26. * INTEGER INFO, ITYPE, LDZ, N
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL AP( * ), BP( * ), W( * ), WORK( * ),
  30. * $ Z( LDZ, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> SSPGV computes all the eigenvalues and, optionally, the eigenvectors
  40. *> of a real generalized symmetric-definite eigenproblem, of the form
  41. *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
  42. *> Here A and B are assumed to be symmetric, stored in packed format,
  43. *> and B is also positive definite.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] ITYPE
  50. *> \verbatim
  51. *> ITYPE is INTEGER
  52. *> Specifies the problem type to be solved:
  53. *> = 1: A*x = (lambda)*B*x
  54. *> = 2: A*B*x = (lambda)*x
  55. *> = 3: B*A*x = (lambda)*x
  56. *> \endverbatim
  57. *>
  58. *> \param[in] JOBZ
  59. *> \verbatim
  60. *> JOBZ is CHARACTER*1
  61. *> = 'N': Compute eigenvalues only;
  62. *> = 'V': Compute eigenvalues and eigenvectors.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] UPLO
  66. *> \verbatim
  67. *> UPLO is CHARACTER*1
  68. *> = 'U': Upper triangles of A and B are stored;
  69. *> = 'L': Lower triangles of A and B are stored.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] N
  73. *> \verbatim
  74. *> N is INTEGER
  75. *> The order of the matrices A and B. N >= 0.
  76. *> \endverbatim
  77. *>
  78. *> \param[in,out] AP
  79. *> \verbatim
  80. *> AP is REAL array, dimension (N*(N+1)/2)
  81. *> On entry, the upper or lower triangle of the symmetric matrix
  82. *> A, packed columnwise in a linear array. The j-th column of A
  83. *> is stored in the array AP as follows:
  84. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  85. *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
  86. *>
  87. *> On exit, the contents of AP are destroyed.
  88. *> \endverbatim
  89. *>
  90. *> \param[in,out] BP
  91. *> \verbatim
  92. *> BP is REAL array, dimension (N*(N+1)/2)
  93. *> On entry, the upper or lower triangle of the symmetric matrix
  94. *> B, packed columnwise in a linear array. The j-th column of B
  95. *> is stored in the array BP as follows:
  96. *> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
  97. *> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
  98. *>
  99. *> On exit, the triangular factor U or L from the Cholesky
  100. *> factorization B = U**T*U or B = L*L**T, in the same storage
  101. *> format as B.
  102. *> \endverbatim
  103. *>
  104. *> \param[out] W
  105. *> \verbatim
  106. *> W is REAL array, dimension (N)
  107. *> If INFO = 0, the eigenvalues in ascending order.
  108. *> \endverbatim
  109. *>
  110. *> \param[out] Z
  111. *> \verbatim
  112. *> Z is REAL array, dimension (LDZ, N)
  113. *> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
  114. *> eigenvectors. The eigenvectors are normalized as follows:
  115. *> if ITYPE = 1 or 2, Z**T*B*Z = I;
  116. *> if ITYPE = 3, Z**T*inv(B)*Z = I.
  117. *> If JOBZ = 'N', then Z is not referenced.
  118. *> \endverbatim
  119. *>
  120. *> \param[in] LDZ
  121. *> \verbatim
  122. *> LDZ is INTEGER
  123. *> The leading dimension of the array Z. LDZ >= 1, and if
  124. *> JOBZ = 'V', LDZ >= max(1,N).
  125. *> \endverbatim
  126. *>
  127. *> \param[out] WORK
  128. *> \verbatim
  129. *> WORK is REAL array, dimension (3*N)
  130. *> \endverbatim
  131. *>
  132. *> \param[out] INFO
  133. *> \verbatim
  134. *> INFO is INTEGER
  135. *> = 0: successful exit
  136. *> < 0: if INFO = -i, the i-th argument had an illegal value
  137. *> > 0: SPPTRF or SSPEV returned an error code:
  138. *> <= N: if INFO = i, SSPEV failed to converge;
  139. *> i off-diagonal elements of an intermediate
  140. *> tridiagonal form did not converge to zero.
  141. *> > N: if INFO = n + i, for 1 <= i <= n, then the leading
  142. *> minor of order i of B is not positive definite.
  143. *> The factorization of B could not be completed and
  144. *> no eigenvalues or eigenvectors were computed.
  145. *> \endverbatim
  146. *
  147. * Authors:
  148. * ========
  149. *
  150. *> \author Univ. of Tennessee
  151. *> \author Univ. of California Berkeley
  152. *> \author Univ. of Colorado Denver
  153. *> \author NAG Ltd.
  154. *
  155. *> \ingroup realOTHEReigen
  156. *
  157. * =====================================================================
  158. SUBROUTINE SSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
  159. $ INFO )
  160. *
  161. * -- LAPACK driver routine --
  162. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  163. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  164. *
  165. * .. Scalar Arguments ..
  166. CHARACTER JOBZ, UPLO
  167. INTEGER INFO, ITYPE, LDZ, N
  168. * ..
  169. * .. Array Arguments ..
  170. REAL AP( * ), BP( * ), W( * ), WORK( * ),
  171. $ Z( LDZ, * )
  172. * ..
  173. *
  174. * =====================================================================
  175. *
  176. * .. Local Scalars ..
  177. LOGICAL UPPER, WANTZ
  178. CHARACTER TRANS
  179. INTEGER J, NEIG
  180. * ..
  181. * .. External Functions ..
  182. LOGICAL LSAME
  183. EXTERNAL LSAME
  184. * ..
  185. * .. External Subroutines ..
  186. EXTERNAL SPPTRF, SSPEV, SSPGST, STPMV, STPSV, XERBLA
  187. * ..
  188. * .. Executable Statements ..
  189. *
  190. * Test the input parameters.
  191. *
  192. WANTZ = LSAME( JOBZ, 'V' )
  193. UPPER = LSAME( UPLO, 'U' )
  194. *
  195. INFO = 0
  196. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  197. INFO = -1
  198. ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  199. INFO = -2
  200. ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  201. INFO = -3
  202. ELSE IF( N.LT.0 ) THEN
  203. INFO = -4
  204. ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  205. INFO = -9
  206. END IF
  207. IF( INFO.NE.0 ) THEN
  208. CALL XERBLA( 'SSPGV ', -INFO )
  209. RETURN
  210. END IF
  211. *
  212. * Quick return if possible
  213. *
  214. IF( N.EQ.0 )
  215. $ RETURN
  216. *
  217. * Form a Cholesky factorization of B.
  218. *
  219. CALL SPPTRF( UPLO, N, BP, INFO )
  220. IF( INFO.NE.0 ) THEN
  221. INFO = N + INFO
  222. RETURN
  223. END IF
  224. *
  225. * Transform problem to standard eigenvalue problem and solve.
  226. *
  227. CALL SSPGST( ITYPE, UPLO, N, AP, BP, INFO )
  228. CALL SSPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, INFO )
  229. *
  230. IF( WANTZ ) THEN
  231. *
  232. * Backtransform eigenvectors to the original problem.
  233. *
  234. NEIG = N
  235. IF( INFO.GT.0 )
  236. $ NEIG = INFO - 1
  237. IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  238. *
  239. * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  240. * backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
  241. *
  242. IF( UPPER ) THEN
  243. TRANS = 'N'
  244. ELSE
  245. TRANS = 'T'
  246. END IF
  247. *
  248. DO 10 J = 1, NEIG
  249. CALL STPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  250. $ 1 )
  251. 10 CONTINUE
  252. *
  253. ELSE IF( ITYPE.EQ.3 ) THEN
  254. *
  255. * For B*A*x=(lambda)*x;
  256. * backtransform eigenvectors: x = L*y or U**T*y
  257. *
  258. IF( UPPER ) THEN
  259. TRANS = 'T'
  260. ELSE
  261. TRANS = 'N'
  262. END IF
  263. *
  264. DO 20 J = 1, NEIG
  265. CALL STPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  266. $ 1 )
  267. 20 CONTINUE
  268. END IF
  269. END IF
  270. RETURN
  271. *
  272. * End of SSPGV
  273. *
  274. END