You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssbgvx.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519
  1. *> \brief \b SSBGVX
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSBGVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssbgvx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssbgvx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssbgvx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
  22. * LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
  23. * LDZ, WORK, IWORK, IFAIL, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBZ, RANGE, UPLO
  27. * INTEGER IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
  28. * $ N
  29. * REAL ABSTOL, VL, VU
  30. * ..
  31. * .. Array Arguments ..
  32. * INTEGER IFAIL( * ), IWORK( * )
  33. * REAL AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
  34. * $ W( * ), WORK( * ), Z( LDZ, * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> SSBGVX computes selected eigenvalues, and optionally, eigenvectors
  44. *> of a real generalized symmetric-definite banded eigenproblem, of
  45. *> the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
  46. *> and banded, and B is also positive definite. Eigenvalues and
  47. *> eigenvectors can be selected by specifying either all eigenvalues,
  48. *> a range of values or a range of indices for the desired eigenvalues.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] JOBZ
  55. *> \verbatim
  56. *> JOBZ is CHARACTER*1
  57. *> = 'N': Compute eigenvalues only;
  58. *> = 'V': Compute eigenvalues and eigenvectors.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] RANGE
  62. *> \verbatim
  63. *> RANGE is CHARACTER*1
  64. *> = 'A': all eigenvalues will be found.
  65. *> = 'V': all eigenvalues in the half-open interval (VL,VU]
  66. *> will be found.
  67. *> = 'I': the IL-th through IU-th eigenvalues will be found.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] UPLO
  71. *> \verbatim
  72. *> UPLO is CHARACTER*1
  73. *> = 'U': Upper triangles of A and B are stored;
  74. *> = 'L': Lower triangles of A and B are stored.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] N
  78. *> \verbatim
  79. *> N is INTEGER
  80. *> The order of the matrices A and B. N >= 0.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] KA
  84. *> \verbatim
  85. *> KA is INTEGER
  86. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  87. *> or the number of subdiagonals if UPLO = 'L'. KA >= 0.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] KB
  91. *> \verbatim
  92. *> KB is INTEGER
  93. *> The number of superdiagonals of the matrix B if UPLO = 'U',
  94. *> or the number of subdiagonals if UPLO = 'L'. KB >= 0.
  95. *> \endverbatim
  96. *>
  97. *> \param[in,out] AB
  98. *> \verbatim
  99. *> AB is REAL array, dimension (LDAB, N)
  100. *> On entry, the upper or lower triangle of the symmetric band
  101. *> matrix A, stored in the first ka+1 rows of the array. The
  102. *> j-th column of A is stored in the j-th column of the array AB
  103. *> as follows:
  104. *> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
  105. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
  106. *>
  107. *> On exit, the contents of AB are destroyed.
  108. *> \endverbatim
  109. *>
  110. *> \param[in] LDAB
  111. *> \verbatim
  112. *> LDAB is INTEGER
  113. *> The leading dimension of the array AB. LDAB >= KA+1.
  114. *> \endverbatim
  115. *>
  116. *> \param[in,out] BB
  117. *> \verbatim
  118. *> BB is REAL array, dimension (LDBB, N)
  119. *> On entry, the upper or lower triangle of the symmetric band
  120. *> matrix B, stored in the first kb+1 rows of the array. The
  121. *> j-th column of B is stored in the j-th column of the array BB
  122. *> as follows:
  123. *> if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
  124. *> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
  125. *>
  126. *> On exit, the factor S from the split Cholesky factorization
  127. *> B = S**T*S, as returned by SPBSTF.
  128. *> \endverbatim
  129. *>
  130. *> \param[in] LDBB
  131. *> \verbatim
  132. *> LDBB is INTEGER
  133. *> The leading dimension of the array BB. LDBB >= KB+1.
  134. *> \endverbatim
  135. *>
  136. *> \param[out] Q
  137. *> \verbatim
  138. *> Q is REAL array, dimension (LDQ, N)
  139. *> If JOBZ = 'V', the n-by-n matrix used in the reduction of
  140. *> A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
  141. *> and consequently C to tridiagonal form.
  142. *> If JOBZ = 'N', the array Q is not referenced.
  143. *> \endverbatim
  144. *>
  145. *> \param[in] LDQ
  146. *> \verbatim
  147. *> LDQ is INTEGER
  148. *> The leading dimension of the array Q. If JOBZ = 'N',
  149. *> LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
  150. *> \endverbatim
  151. *>
  152. *> \param[in] VL
  153. *> \verbatim
  154. *> VL is REAL
  155. *>
  156. *> If RANGE='V', the lower bound of the interval to
  157. *> be searched for eigenvalues. VL < VU.
  158. *> Not referenced if RANGE = 'A' or 'I'.
  159. *> \endverbatim
  160. *>
  161. *> \param[in] VU
  162. *> \verbatim
  163. *> VU is REAL
  164. *>
  165. *> If RANGE='V', the upper bound of the interval to
  166. *> be searched for eigenvalues. VL < VU.
  167. *> Not referenced if RANGE = 'A' or 'I'.
  168. *> \endverbatim
  169. *>
  170. *> \param[in] IL
  171. *> \verbatim
  172. *> IL is INTEGER
  173. *>
  174. *> If RANGE='I', the index of the
  175. *> smallest eigenvalue to be returned.
  176. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  177. *> Not referenced if RANGE = 'A' or 'V'.
  178. *> \endverbatim
  179. *>
  180. *> \param[in] IU
  181. *> \verbatim
  182. *> IU is INTEGER
  183. *>
  184. *> If RANGE='I', the index of the
  185. *> largest eigenvalue to be returned.
  186. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  187. *> Not referenced if RANGE = 'A' or 'V'.
  188. *> \endverbatim
  189. *>
  190. *> \param[in] ABSTOL
  191. *> \verbatim
  192. *> ABSTOL is REAL
  193. *> The absolute error tolerance for the eigenvalues.
  194. *> An approximate eigenvalue is accepted as converged
  195. *> when it is determined to lie in an interval [a,b]
  196. *> of width less than or equal to
  197. *>
  198. *> ABSTOL + EPS * max( |a|,|b| ) ,
  199. *>
  200. *> where EPS is the machine precision. If ABSTOL is less than
  201. *> or equal to zero, then EPS*|T| will be used in its place,
  202. *> where |T| is the 1-norm of the tridiagonal matrix obtained
  203. *> by reducing A to tridiagonal form.
  204. *>
  205. *> Eigenvalues will be computed most accurately when ABSTOL is
  206. *> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
  207. *> If this routine returns with INFO>0, indicating that some
  208. *> eigenvectors did not converge, try setting ABSTOL to
  209. *> 2*SLAMCH('S').
  210. *> \endverbatim
  211. *>
  212. *> \param[out] M
  213. *> \verbatim
  214. *> M is INTEGER
  215. *> The total number of eigenvalues found. 0 <= M <= N.
  216. *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  217. *> \endverbatim
  218. *>
  219. *> \param[out] W
  220. *> \verbatim
  221. *> W is REAL array, dimension (N)
  222. *> If INFO = 0, the eigenvalues in ascending order.
  223. *> \endverbatim
  224. *>
  225. *> \param[out] Z
  226. *> \verbatim
  227. *> Z is REAL array, dimension (LDZ, N)
  228. *> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
  229. *> eigenvectors, with the i-th column of Z holding the
  230. *> eigenvector associated with W(i). The eigenvectors are
  231. *> normalized so Z**T*B*Z = I.
  232. *> If JOBZ = 'N', then Z is not referenced.
  233. *> \endverbatim
  234. *>
  235. *> \param[in] LDZ
  236. *> \verbatim
  237. *> LDZ is INTEGER
  238. *> The leading dimension of the array Z. LDZ >= 1, and if
  239. *> JOBZ = 'V', LDZ >= max(1,N).
  240. *> \endverbatim
  241. *>
  242. *> \param[out] WORK
  243. *> \verbatim
  244. *> WORK is REAL array, dimension (7*N)
  245. *> \endverbatim
  246. *>
  247. *> \param[out] IWORK
  248. *> \verbatim
  249. *> IWORK is INTEGER array, dimension (5*N)
  250. *> \endverbatim
  251. *>
  252. *> \param[out] IFAIL
  253. *> \verbatim
  254. *> IFAIL is INTEGER array, dimension (M)
  255. *> If JOBZ = 'V', then if INFO = 0, the first M elements of
  256. *> IFAIL are zero. If INFO > 0, then IFAIL contains the
  257. *> indices of the eigenvalues that failed to converge.
  258. *> If JOBZ = 'N', then IFAIL is not referenced.
  259. *> \endverbatim
  260. *>
  261. *> \param[out] INFO
  262. *> \verbatim
  263. *> INFO is INTEGER
  264. *> = 0: successful exit
  265. *> < 0: if INFO = -i, the i-th argument had an illegal value
  266. *> <= N: if INFO = i, then i eigenvectors failed to converge.
  267. *> Their indices are stored in IFAIL.
  268. *> > N: SPBSTF returned an error code; i.e.,
  269. *> if INFO = N + i, for 1 <= i <= N, then the leading
  270. *> minor of order i of B is not positive definite.
  271. *> The factorization of B could not be completed and
  272. *> no eigenvalues or eigenvectors were computed.
  273. *> \endverbatim
  274. *
  275. * Authors:
  276. * ========
  277. *
  278. *> \author Univ. of Tennessee
  279. *> \author Univ. of California Berkeley
  280. *> \author Univ. of Colorado Denver
  281. *> \author NAG Ltd.
  282. *
  283. *> \ingroup realOTHEReigen
  284. *
  285. *> \par Contributors:
  286. * ==================
  287. *>
  288. *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  289. *
  290. * =====================================================================
  291. SUBROUTINE SSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
  292. $ LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
  293. $ LDZ, WORK, IWORK, IFAIL, INFO )
  294. *
  295. * -- LAPACK driver routine --
  296. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  297. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  298. *
  299. * .. Scalar Arguments ..
  300. CHARACTER JOBZ, RANGE, UPLO
  301. INTEGER IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
  302. $ N
  303. REAL ABSTOL, VL, VU
  304. * ..
  305. * .. Array Arguments ..
  306. INTEGER IFAIL( * ), IWORK( * )
  307. REAL AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
  308. $ W( * ), WORK( * ), Z( LDZ, * )
  309. * ..
  310. *
  311. * =====================================================================
  312. *
  313. * .. Parameters ..
  314. REAL ZERO, ONE
  315. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  316. * ..
  317. * .. Local Scalars ..
  318. LOGICAL ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
  319. CHARACTER ORDER, VECT
  320. INTEGER I, IINFO, INDD, INDE, INDEE, INDIBL, INDISP,
  321. $ INDIWO, INDWRK, ITMP1, J, JJ, NSPLIT
  322. REAL TMP1
  323. * ..
  324. * .. External Functions ..
  325. LOGICAL LSAME
  326. EXTERNAL LSAME
  327. * ..
  328. * .. External Subroutines ..
  329. EXTERNAL SCOPY, SGEMV, SLACPY, SPBSTF, SSBGST, SSBTRD,
  330. $ SSTEBZ, SSTEIN, SSTEQR, SSTERF, SSWAP, XERBLA
  331. * ..
  332. * .. Intrinsic Functions ..
  333. INTRINSIC MIN
  334. * ..
  335. * .. Executable Statements ..
  336. *
  337. * Test the input parameters.
  338. *
  339. WANTZ = LSAME( JOBZ, 'V' )
  340. UPPER = LSAME( UPLO, 'U' )
  341. ALLEIG = LSAME( RANGE, 'A' )
  342. VALEIG = LSAME( RANGE, 'V' )
  343. INDEIG = LSAME( RANGE, 'I' )
  344. *
  345. INFO = 0
  346. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  347. INFO = -1
  348. ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  349. INFO = -2
  350. ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  351. INFO = -3
  352. ELSE IF( N.LT.0 ) THEN
  353. INFO = -4
  354. ELSE IF( KA.LT.0 ) THEN
  355. INFO = -5
  356. ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
  357. INFO = -6
  358. ELSE IF( LDAB.LT.KA+1 ) THEN
  359. INFO = -8
  360. ELSE IF( LDBB.LT.KB+1 ) THEN
  361. INFO = -10
  362. ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
  363. INFO = -12
  364. ELSE
  365. IF( VALEIG ) THEN
  366. IF( N.GT.0 .AND. VU.LE.VL )
  367. $ INFO = -14
  368. ELSE IF( INDEIG ) THEN
  369. IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  370. INFO = -15
  371. ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  372. INFO = -16
  373. END IF
  374. END IF
  375. END IF
  376. IF( INFO.EQ.0) THEN
  377. IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  378. INFO = -21
  379. END IF
  380. END IF
  381. *
  382. IF( INFO.NE.0 ) THEN
  383. CALL XERBLA( 'SSBGVX', -INFO )
  384. RETURN
  385. END IF
  386. *
  387. * Quick return if possible
  388. *
  389. M = 0
  390. IF( N.EQ.0 )
  391. $ RETURN
  392. *
  393. * Form a split Cholesky factorization of B.
  394. *
  395. CALL SPBSTF( UPLO, N, KB, BB, LDBB, INFO )
  396. IF( INFO.NE.0 ) THEN
  397. INFO = N + INFO
  398. RETURN
  399. END IF
  400. *
  401. * Transform problem to standard eigenvalue problem.
  402. *
  403. CALL SSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
  404. $ WORK, IINFO )
  405. *
  406. * Reduce symmetric band matrix to tridiagonal form.
  407. *
  408. INDD = 1
  409. INDE = INDD + N
  410. INDWRK = INDE + N
  411. IF( WANTZ ) THEN
  412. VECT = 'U'
  413. ELSE
  414. VECT = 'N'
  415. END IF
  416. CALL SSBTRD( VECT, UPLO, N, KA, AB, LDAB, WORK( INDD ),
  417. $ WORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
  418. *
  419. * If all eigenvalues are desired and ABSTOL is less than or equal
  420. * to zero, then call SSTERF or SSTEQR. If this fails for some
  421. * eigenvalue, then try SSTEBZ.
  422. *
  423. TEST = .FALSE.
  424. IF( INDEIG ) THEN
  425. IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  426. TEST = .TRUE.
  427. END IF
  428. END IF
  429. IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
  430. CALL SCOPY( N, WORK( INDD ), 1, W, 1 )
  431. INDEE = INDWRK + 2*N
  432. CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  433. IF( .NOT.WANTZ ) THEN
  434. CALL SSTERF( N, W, WORK( INDEE ), INFO )
  435. ELSE
  436. CALL SLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
  437. CALL SSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
  438. $ WORK( INDWRK ), INFO )
  439. IF( INFO.EQ.0 ) THEN
  440. DO 10 I = 1, N
  441. IFAIL( I ) = 0
  442. 10 CONTINUE
  443. END IF
  444. END IF
  445. IF( INFO.EQ.0 ) THEN
  446. M = N
  447. GO TO 30
  448. END IF
  449. INFO = 0
  450. END IF
  451. *
  452. * Otherwise, call SSTEBZ and, if eigenvectors are desired,
  453. * call SSTEIN.
  454. *
  455. IF( WANTZ ) THEN
  456. ORDER = 'B'
  457. ELSE
  458. ORDER = 'E'
  459. END IF
  460. INDIBL = 1
  461. INDISP = INDIBL + N
  462. INDIWO = INDISP + N
  463. CALL SSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
  464. $ WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  465. $ IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
  466. $ IWORK( INDIWO ), INFO )
  467. *
  468. IF( WANTZ ) THEN
  469. CALL SSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  470. $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  471. $ WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
  472. *
  473. * Apply transformation matrix used in reduction to tridiagonal
  474. * form to eigenvectors returned by SSTEIN.
  475. *
  476. DO 20 J = 1, M
  477. CALL SCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
  478. CALL SGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO,
  479. $ Z( 1, J ), 1 )
  480. 20 CONTINUE
  481. END IF
  482. *
  483. 30 CONTINUE
  484. *
  485. * If eigenvalues are not in order, then sort them, along with
  486. * eigenvectors.
  487. *
  488. IF( WANTZ ) THEN
  489. DO 50 J = 1, M - 1
  490. I = 0
  491. TMP1 = W( J )
  492. DO 40 JJ = J + 1, M
  493. IF( W( JJ ).LT.TMP1 ) THEN
  494. I = JJ
  495. TMP1 = W( JJ )
  496. END IF
  497. 40 CONTINUE
  498. *
  499. IF( I.NE.0 ) THEN
  500. ITMP1 = IWORK( INDIBL+I-1 )
  501. W( I ) = W( J )
  502. IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  503. W( J ) = TMP1
  504. IWORK( INDIBL+J-1 ) = ITMP1
  505. CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  506. IF( INFO.NE.0 ) THEN
  507. ITMP1 = IFAIL( I )
  508. IFAIL( I ) = IFAIL( J )
  509. IFAIL( J ) = ITMP1
  510. END IF
  511. END IF
  512. 50 CONTINUE
  513. END IF
  514. *
  515. RETURN
  516. *
  517. * End of SSBGVX
  518. *
  519. END