You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtrrfs.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469
  1. *> \brief \b DTRRFS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DTRRFS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrrfs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrrfs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrrfs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DTRRFS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X,
  22. * LDX, FERR, BERR, WORK, IWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, TRANS, UPLO
  26. * INTEGER INFO, LDA, LDB, LDX, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * )
  30. * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), BERR( * ), FERR( * ),
  31. * $ WORK( * ), X( LDX, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> DTRRFS provides error bounds and backward error estimates for the
  41. *> solution to a system of linear equations with a triangular
  42. *> coefficient matrix.
  43. *>
  44. *> The solution matrix X must be computed by DTRTRS or some other
  45. *> means before entering this routine. DTRRFS does not do iterative
  46. *> refinement because doing so cannot improve the backward error.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] UPLO
  53. *> \verbatim
  54. *> UPLO is CHARACTER*1
  55. *> = 'U': A is upper triangular;
  56. *> = 'L': A is lower triangular.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] TRANS
  60. *> \verbatim
  61. *> TRANS is CHARACTER*1
  62. *> Specifies the form of the system of equations:
  63. *> = 'N': A * X = B (No transpose)
  64. *> = 'T': A**T * X = B (Transpose)
  65. *> = 'C': A**H * X = B (Conjugate transpose = Transpose)
  66. *> \endverbatim
  67. *>
  68. *> \param[in] DIAG
  69. *> \verbatim
  70. *> DIAG is CHARACTER*1
  71. *> = 'N': A is non-unit triangular;
  72. *> = 'U': A is unit triangular.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] N
  76. *> \verbatim
  77. *> N is INTEGER
  78. *> The order of the matrix A. N >= 0.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] NRHS
  82. *> \verbatim
  83. *> NRHS is INTEGER
  84. *> The number of right hand sides, i.e., the number of columns
  85. *> of the matrices B and X. NRHS >= 0.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] A
  89. *> \verbatim
  90. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  91. *> The triangular matrix A. If UPLO = 'U', the leading N-by-N
  92. *> upper triangular part of the array A contains the upper
  93. *> triangular matrix, and the strictly lower triangular part of
  94. *> A is not referenced. If UPLO = 'L', the leading N-by-N lower
  95. *> triangular part of the array A contains the lower triangular
  96. *> matrix, and the strictly upper triangular part of A is not
  97. *> referenced. If DIAG = 'U', the diagonal elements of A are
  98. *> also not referenced and are assumed to be 1.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LDA
  102. *> \verbatim
  103. *> LDA is INTEGER
  104. *> The leading dimension of the array A. LDA >= max(1,N).
  105. *> \endverbatim
  106. *>
  107. *> \param[in] B
  108. *> \verbatim
  109. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  110. *> The right hand side matrix B.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] LDB
  114. *> \verbatim
  115. *> LDB is INTEGER
  116. *> The leading dimension of the array B. LDB >= max(1,N).
  117. *> \endverbatim
  118. *>
  119. *> \param[in] X
  120. *> \verbatim
  121. *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  122. *> The solution matrix X.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] LDX
  126. *> \verbatim
  127. *> LDX is INTEGER
  128. *> The leading dimension of the array X. LDX >= max(1,N).
  129. *> \endverbatim
  130. *>
  131. *> \param[out] FERR
  132. *> \verbatim
  133. *> FERR is DOUBLE PRECISION array, dimension (NRHS)
  134. *> The estimated forward error bound for each solution vector
  135. *> X(j) (the j-th column of the solution matrix X).
  136. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  137. *> is an estimated upper bound for the magnitude of the largest
  138. *> element in (X(j) - XTRUE) divided by the magnitude of the
  139. *> largest element in X(j). The estimate is as reliable as
  140. *> the estimate for RCOND, and is almost always a slight
  141. *> overestimate of the true error.
  142. *> \endverbatim
  143. *>
  144. *> \param[out] BERR
  145. *> \verbatim
  146. *> BERR is DOUBLE PRECISION array, dimension (NRHS)
  147. *> The componentwise relative backward error of each solution
  148. *> vector X(j) (i.e., the smallest relative change in
  149. *> any element of A or B that makes X(j) an exact solution).
  150. *> \endverbatim
  151. *>
  152. *> \param[out] WORK
  153. *> \verbatim
  154. *> WORK is DOUBLE PRECISION array, dimension (3*N)
  155. *> \endverbatim
  156. *>
  157. *> \param[out] IWORK
  158. *> \verbatim
  159. *> IWORK is INTEGER array, dimension (N)
  160. *> \endverbatim
  161. *>
  162. *> \param[out] INFO
  163. *> \verbatim
  164. *> INFO is INTEGER
  165. *> = 0: successful exit
  166. *> < 0: if INFO = -i, the i-th argument had an illegal value
  167. *> \endverbatim
  168. *
  169. * Authors:
  170. * ========
  171. *
  172. *> \author Univ. of Tennessee
  173. *> \author Univ. of California Berkeley
  174. *> \author Univ. of Colorado Denver
  175. *> \author NAG Ltd.
  176. *
  177. *> \ingroup doubleOTHERcomputational
  178. *
  179. * =====================================================================
  180. SUBROUTINE DTRRFS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X,
  181. $ LDX, FERR, BERR, WORK, IWORK, INFO )
  182. *
  183. * -- LAPACK computational routine --
  184. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  185. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  186. *
  187. * .. Scalar Arguments ..
  188. CHARACTER DIAG, TRANS, UPLO
  189. INTEGER INFO, LDA, LDB, LDX, N, NRHS
  190. * ..
  191. * .. Array Arguments ..
  192. INTEGER IWORK( * )
  193. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), BERR( * ), FERR( * ),
  194. $ WORK( * ), X( LDX, * )
  195. * ..
  196. *
  197. * =====================================================================
  198. *
  199. * .. Parameters ..
  200. DOUBLE PRECISION ZERO
  201. PARAMETER ( ZERO = 0.0D+0 )
  202. DOUBLE PRECISION ONE
  203. PARAMETER ( ONE = 1.0D+0 )
  204. * ..
  205. * .. Local Scalars ..
  206. LOGICAL NOTRAN, NOUNIT, UPPER
  207. CHARACTER TRANST
  208. INTEGER I, J, K, KASE, NZ
  209. DOUBLE PRECISION EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  210. * ..
  211. * .. Local Arrays ..
  212. INTEGER ISAVE( 3 )
  213. * ..
  214. * .. External Subroutines ..
  215. EXTERNAL DAXPY, DCOPY, DLACN2, DTRMV, DTRSV, XERBLA
  216. * ..
  217. * .. Intrinsic Functions ..
  218. INTRINSIC ABS, MAX
  219. * ..
  220. * .. External Functions ..
  221. LOGICAL LSAME
  222. DOUBLE PRECISION DLAMCH
  223. EXTERNAL LSAME, DLAMCH
  224. * ..
  225. * .. Executable Statements ..
  226. *
  227. * Test the input parameters.
  228. *
  229. INFO = 0
  230. UPPER = LSAME( UPLO, 'U' )
  231. NOTRAN = LSAME( TRANS, 'N' )
  232. NOUNIT = LSAME( DIAG, 'N' )
  233. *
  234. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  235. INFO = -1
  236. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  237. $ LSAME( TRANS, 'C' ) ) THEN
  238. INFO = -2
  239. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  240. INFO = -3
  241. ELSE IF( N.LT.0 ) THEN
  242. INFO = -4
  243. ELSE IF( NRHS.LT.0 ) THEN
  244. INFO = -5
  245. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  246. INFO = -7
  247. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  248. INFO = -9
  249. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  250. INFO = -11
  251. END IF
  252. IF( INFO.NE.0 ) THEN
  253. CALL XERBLA( 'DTRRFS', -INFO )
  254. RETURN
  255. END IF
  256. *
  257. * Quick return if possible
  258. *
  259. IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  260. DO 10 J = 1, NRHS
  261. FERR( J ) = ZERO
  262. BERR( J ) = ZERO
  263. 10 CONTINUE
  264. RETURN
  265. END IF
  266. *
  267. IF( NOTRAN ) THEN
  268. TRANST = 'T'
  269. ELSE
  270. TRANST = 'N'
  271. END IF
  272. *
  273. * NZ = maximum number of nonzero elements in each row of A, plus 1
  274. *
  275. NZ = N + 1
  276. EPS = DLAMCH( 'Epsilon' )
  277. SAFMIN = DLAMCH( 'Safe minimum' )
  278. SAFE1 = NZ*SAFMIN
  279. SAFE2 = SAFE1 / EPS
  280. *
  281. * Do for each right hand side
  282. *
  283. DO 250 J = 1, NRHS
  284. *
  285. * Compute residual R = B - op(A) * X,
  286. * where op(A) = A or A**T, depending on TRANS.
  287. *
  288. CALL DCOPY( N, X( 1, J ), 1, WORK( N+1 ), 1 )
  289. CALL DTRMV( UPLO, TRANS, DIAG, N, A, LDA, WORK( N+1 ), 1 )
  290. CALL DAXPY( N, -ONE, B( 1, J ), 1, WORK( N+1 ), 1 )
  291. *
  292. * Compute componentwise relative backward error from formula
  293. *
  294. * max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  295. *
  296. * where abs(Z) is the componentwise absolute value of the matrix
  297. * or vector Z. If the i-th component of the denominator is less
  298. * than SAFE2, then SAFE1 is added to the i-th components of the
  299. * numerator and denominator before dividing.
  300. *
  301. DO 20 I = 1, N
  302. WORK( I ) = ABS( B( I, J ) )
  303. 20 CONTINUE
  304. *
  305. IF( NOTRAN ) THEN
  306. *
  307. * Compute abs(A)*abs(X) + abs(B).
  308. *
  309. IF( UPPER ) THEN
  310. IF( NOUNIT ) THEN
  311. DO 40 K = 1, N
  312. XK = ABS( X( K, J ) )
  313. DO 30 I = 1, K
  314. WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  315. 30 CONTINUE
  316. 40 CONTINUE
  317. ELSE
  318. DO 60 K = 1, N
  319. XK = ABS( X( K, J ) )
  320. DO 50 I = 1, K - 1
  321. WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  322. 50 CONTINUE
  323. WORK( K ) = WORK( K ) + XK
  324. 60 CONTINUE
  325. END IF
  326. ELSE
  327. IF( NOUNIT ) THEN
  328. DO 80 K = 1, N
  329. XK = ABS( X( K, J ) )
  330. DO 70 I = K, N
  331. WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  332. 70 CONTINUE
  333. 80 CONTINUE
  334. ELSE
  335. DO 100 K = 1, N
  336. XK = ABS( X( K, J ) )
  337. DO 90 I = K + 1, N
  338. WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  339. 90 CONTINUE
  340. WORK( K ) = WORK( K ) + XK
  341. 100 CONTINUE
  342. END IF
  343. END IF
  344. ELSE
  345. *
  346. * Compute abs(A**T)*abs(X) + abs(B).
  347. *
  348. IF( UPPER ) THEN
  349. IF( NOUNIT ) THEN
  350. DO 120 K = 1, N
  351. S = ZERO
  352. DO 110 I = 1, K
  353. S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  354. 110 CONTINUE
  355. WORK( K ) = WORK( K ) + S
  356. 120 CONTINUE
  357. ELSE
  358. DO 140 K = 1, N
  359. S = ABS( X( K, J ) )
  360. DO 130 I = 1, K - 1
  361. S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  362. 130 CONTINUE
  363. WORK( K ) = WORK( K ) + S
  364. 140 CONTINUE
  365. END IF
  366. ELSE
  367. IF( NOUNIT ) THEN
  368. DO 160 K = 1, N
  369. S = ZERO
  370. DO 150 I = K, N
  371. S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  372. 150 CONTINUE
  373. WORK( K ) = WORK( K ) + S
  374. 160 CONTINUE
  375. ELSE
  376. DO 180 K = 1, N
  377. S = ABS( X( K, J ) )
  378. DO 170 I = K + 1, N
  379. S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  380. 170 CONTINUE
  381. WORK( K ) = WORK( K ) + S
  382. 180 CONTINUE
  383. END IF
  384. END IF
  385. END IF
  386. S = ZERO
  387. DO 190 I = 1, N
  388. IF( WORK( I ).GT.SAFE2 ) THEN
  389. S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  390. ELSE
  391. S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  392. $ ( WORK( I )+SAFE1 ) )
  393. END IF
  394. 190 CONTINUE
  395. BERR( J ) = S
  396. *
  397. * Bound error from formula
  398. *
  399. * norm(X - XTRUE) / norm(X) .le. FERR =
  400. * norm( abs(inv(op(A)))*
  401. * ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  402. *
  403. * where
  404. * norm(Z) is the magnitude of the largest component of Z
  405. * inv(op(A)) is the inverse of op(A)
  406. * abs(Z) is the componentwise absolute value of the matrix or
  407. * vector Z
  408. * NZ is the maximum number of nonzeros in any row of A, plus 1
  409. * EPS is machine epsilon
  410. *
  411. * The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  412. * is incremented by SAFE1 if the i-th component of
  413. * abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  414. *
  415. * Use DLACN2 to estimate the infinity-norm of the matrix
  416. * inv(op(A)) * diag(W),
  417. * where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  418. *
  419. DO 200 I = 1, N
  420. IF( WORK( I ).GT.SAFE2 ) THEN
  421. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  422. ELSE
  423. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  424. END IF
  425. 200 CONTINUE
  426. *
  427. KASE = 0
  428. 210 CONTINUE
  429. CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  430. $ KASE, ISAVE )
  431. IF( KASE.NE.0 ) THEN
  432. IF( KASE.EQ.1 ) THEN
  433. *
  434. * Multiply by diag(W)*inv(op(A)**T).
  435. *
  436. CALL DTRSV( UPLO, TRANST, DIAG, N, A, LDA, WORK( N+1 ),
  437. $ 1 )
  438. DO 220 I = 1, N
  439. WORK( N+I ) = WORK( I )*WORK( N+I )
  440. 220 CONTINUE
  441. ELSE
  442. *
  443. * Multiply by inv(op(A))*diag(W).
  444. *
  445. DO 230 I = 1, N
  446. WORK( N+I ) = WORK( I )*WORK( N+I )
  447. 230 CONTINUE
  448. CALL DTRSV( UPLO, TRANS, DIAG, N, A, LDA, WORK( N+1 ),
  449. $ 1 )
  450. END IF
  451. GO TO 210
  452. END IF
  453. *
  454. * Normalize error.
  455. *
  456. LSTRES = ZERO
  457. DO 240 I = 1, N
  458. LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  459. 240 CONTINUE
  460. IF( LSTRES.NE.ZERO )
  461. $ FERR( J ) = FERR( J ) / LSTRES
  462. *
  463. 250 CONTINUE
  464. *
  465. RETURN
  466. *
  467. * End of DTRRFS
  468. *
  469. END