You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dpoequb.f 6.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. *> \brief \b DPOEQUB
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DPOEQUB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpoequb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpoequb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpoequb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DPOEQUB( N, A, LDA, S, SCOND, AMAX, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, N
  25. * DOUBLE PRECISION AMAX, SCOND
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION A( LDA, * ), S( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DPOEQUB computes row and column scalings intended to equilibrate a
  38. *> symmetric positive definite matrix A and reduce its condition number
  39. *> (with respect to the two-norm). S contains the scale factors,
  40. *> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
  41. *> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
  42. *> choice of S puts the condition number of B within a factor N of the
  43. *> smallest possible condition number over all possible diagonal
  44. *> scalings.
  45. *>
  46. *> This routine differs from DPOEQU by restricting the scaling factors
  47. *> to a power of the radix. Barring over- and underflow, scaling by
  48. *> these factors introduces no additional rounding errors. However, the
  49. *> scaled diagonal entries are no longer approximately 1 but lie
  50. *> between sqrt(radix) and 1/sqrt(radix).
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The order of the matrix A. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] A
  63. *> \verbatim
  64. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  65. *> The N-by-N symmetric positive definite matrix whose scaling
  66. *> factors are to be computed. Only the diagonal elements of A
  67. *> are referenced.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] LDA
  71. *> \verbatim
  72. *> LDA is INTEGER
  73. *> The leading dimension of the array A. LDA >= max(1,N).
  74. *> \endverbatim
  75. *>
  76. *> \param[out] S
  77. *> \verbatim
  78. *> S is DOUBLE PRECISION array, dimension (N)
  79. *> If INFO = 0, S contains the scale factors for A.
  80. *> \endverbatim
  81. *>
  82. *> \param[out] SCOND
  83. *> \verbatim
  84. *> SCOND is DOUBLE PRECISION
  85. *> If INFO = 0, S contains the ratio of the smallest S(i) to
  86. *> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
  87. *> large nor too small, it is not worth scaling by S.
  88. *> \endverbatim
  89. *>
  90. *> \param[out] AMAX
  91. *> \verbatim
  92. *> AMAX is DOUBLE PRECISION
  93. *> Absolute value of largest matrix element. If AMAX is very
  94. *> close to overflow or very close to underflow, the matrix
  95. *> should be scaled.
  96. *> \endverbatim
  97. *>
  98. *> \param[out] INFO
  99. *> \verbatim
  100. *> INFO is INTEGER
  101. *> = 0: successful exit
  102. *> < 0: if INFO = -i, the i-th argument had an illegal value
  103. *> > 0: if INFO = i, the i-th diagonal element is nonpositive.
  104. *> \endverbatim
  105. *
  106. * Authors:
  107. * ========
  108. *
  109. *> \author Univ. of Tennessee
  110. *> \author Univ. of California Berkeley
  111. *> \author Univ. of Colorado Denver
  112. *> \author NAG Ltd.
  113. *
  114. *> \ingroup doublePOcomputational
  115. *
  116. * =====================================================================
  117. SUBROUTINE DPOEQUB( N, A, LDA, S, SCOND, AMAX, INFO )
  118. *
  119. * -- LAPACK computational routine --
  120. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  121. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  122. *
  123. * .. Scalar Arguments ..
  124. INTEGER INFO, LDA, N
  125. DOUBLE PRECISION AMAX, SCOND
  126. * ..
  127. * .. Array Arguments ..
  128. DOUBLE PRECISION A( LDA, * ), S( * )
  129. * ..
  130. *
  131. * =====================================================================
  132. *
  133. * .. Parameters ..
  134. DOUBLE PRECISION ZERO, ONE
  135. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  136. * ..
  137. * .. Local Scalars ..
  138. INTEGER I
  139. DOUBLE PRECISION SMIN, BASE, TMP
  140. * ..
  141. * .. External Functions ..
  142. DOUBLE PRECISION DLAMCH
  143. EXTERNAL DLAMCH
  144. * ..
  145. * .. External Subroutines ..
  146. EXTERNAL XERBLA
  147. * ..
  148. * .. Intrinsic Functions ..
  149. INTRINSIC MAX, MIN, SQRT, LOG, INT
  150. * ..
  151. * .. Executable Statements ..
  152. *
  153. * Test the input parameters.
  154. *
  155. * Positive definite only performs 1 pass of equilibration.
  156. *
  157. INFO = 0
  158. IF( N.LT.0 ) THEN
  159. INFO = -1
  160. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  161. INFO = -3
  162. END IF
  163. IF( INFO.NE.0 ) THEN
  164. CALL XERBLA( 'DPOEQUB', -INFO )
  165. RETURN
  166. END IF
  167. *
  168. * Quick return if possible.
  169. *
  170. IF( N.EQ.0 ) THEN
  171. SCOND = ONE
  172. AMAX = ZERO
  173. RETURN
  174. END IF
  175. BASE = DLAMCH( 'B' )
  176. TMP = -0.5D+0 / LOG ( BASE )
  177. *
  178. * Find the minimum and maximum diagonal elements.
  179. *
  180. S( 1 ) = A( 1, 1 )
  181. SMIN = S( 1 )
  182. AMAX = S( 1 )
  183. DO 10 I = 2, N
  184. S( I ) = A( I, I )
  185. SMIN = MIN( SMIN, S( I ) )
  186. AMAX = MAX( AMAX, S( I ) )
  187. 10 CONTINUE
  188. *
  189. IF( SMIN.LE.ZERO ) THEN
  190. *
  191. * Find the first non-positive diagonal element and return.
  192. *
  193. DO 20 I = 1, N
  194. IF( S( I ).LE.ZERO ) THEN
  195. INFO = I
  196. RETURN
  197. END IF
  198. 20 CONTINUE
  199. ELSE
  200. *
  201. * Set the scale factors to the reciprocals
  202. * of the diagonal elements.
  203. *
  204. DO 30 I = 1, N
  205. S( I ) = BASE ** INT( TMP * LOG( S( I ) ) )
  206. 30 CONTINUE
  207. *
  208. * Compute SCOND = min(S(I)) / max(S(I)).
  209. *
  210. SCOND = SQRT( SMIN ) / SQRT( AMAX )
  211. END IF
  212. *
  213. RETURN
  214. *
  215. * End of DPOEQUB
  216. *
  217. END