You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlahqr.f 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621
  1. *> \brief \b DLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLAHQR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlahqr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlahqr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlahqr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
  22. * ILOZ, IHIZ, Z, LDZ, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
  26. * LOGICAL WANTT, WANTZ
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> DLAHQR is an auxiliary routine called by DHSEQR to update the
  39. *> eigenvalues and Schur decomposition already computed by DHSEQR, by
  40. *> dealing with the Hessenberg submatrix in rows and columns ILO to
  41. *> IHI.
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] WANTT
  48. *> \verbatim
  49. *> WANTT is LOGICAL
  50. *> = .TRUE. : the full Schur form T is required;
  51. *> = .FALSE.: only eigenvalues are required.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] WANTZ
  55. *> \verbatim
  56. *> WANTZ is LOGICAL
  57. *> = .TRUE. : the matrix of Schur vectors Z is required;
  58. *> = .FALSE.: Schur vectors are not required.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The order of the matrix H. N >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] ILO
  68. *> \verbatim
  69. *> ILO is INTEGER
  70. *> \endverbatim
  71. *>
  72. *> \param[in] IHI
  73. *> \verbatim
  74. *> IHI is INTEGER
  75. *> It is assumed that H is already upper quasi-triangular in
  76. *> rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
  77. *> ILO = 1). DLAHQR works primarily with the Hessenberg
  78. *> submatrix in rows and columns ILO to IHI, but applies
  79. *> transformations to all of H if WANTT is .TRUE..
  80. *> 1 <= ILO <= max(1,IHI); IHI <= N.
  81. *> \endverbatim
  82. *>
  83. *> \param[in,out] H
  84. *> \verbatim
  85. *> H is DOUBLE PRECISION array, dimension (LDH,N)
  86. *> On entry, the upper Hessenberg matrix H.
  87. *> On exit, if INFO is zero and if WANTT is .TRUE., H is upper
  88. *> quasi-triangular in rows and columns ILO:IHI, with any
  89. *> 2-by-2 diagonal blocks in standard form. If INFO is zero
  90. *> and WANTT is .FALSE., the contents of H are unspecified on
  91. *> exit. The output state of H if INFO is nonzero is given
  92. *> below under the description of INFO.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDH
  96. *> \verbatim
  97. *> LDH is INTEGER
  98. *> The leading dimension of the array H. LDH >= max(1,N).
  99. *> \endverbatim
  100. *>
  101. *> \param[out] WR
  102. *> \verbatim
  103. *> WR is DOUBLE PRECISION array, dimension (N)
  104. *> \endverbatim
  105. *>
  106. *> \param[out] WI
  107. *> \verbatim
  108. *> WI is DOUBLE PRECISION array, dimension (N)
  109. *> The real and imaginary parts, respectively, of the computed
  110. *> eigenvalues ILO to IHI are stored in the corresponding
  111. *> elements of WR and WI. If two eigenvalues are computed as a
  112. *> complex conjugate pair, they are stored in consecutive
  113. *> elements of WR and WI, say the i-th and (i+1)th, with
  114. *> WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
  115. *> eigenvalues are stored in the same order as on the diagonal
  116. *> of the Schur form returned in H, with WR(i) = H(i,i), and, if
  117. *> H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
  118. *> WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
  119. *> \endverbatim
  120. *>
  121. *> \param[in] ILOZ
  122. *> \verbatim
  123. *> ILOZ is INTEGER
  124. *> \endverbatim
  125. *>
  126. *> \param[in] IHIZ
  127. *> \verbatim
  128. *> IHIZ is INTEGER
  129. *> Specify the rows of Z to which transformations must be
  130. *> applied if WANTZ is .TRUE..
  131. *> 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
  132. *> \endverbatim
  133. *>
  134. *> \param[in,out] Z
  135. *> \verbatim
  136. *> Z is DOUBLE PRECISION array, dimension (LDZ,N)
  137. *> If WANTZ is .TRUE., on entry Z must contain the current
  138. *> matrix Z of transformations accumulated by DHSEQR, and on
  139. *> exit Z has been updated; transformations are applied only to
  140. *> the submatrix Z(ILOZ:IHIZ,ILO:IHI).
  141. *> If WANTZ is .FALSE., Z is not referenced.
  142. *> \endverbatim
  143. *>
  144. *> \param[in] LDZ
  145. *> \verbatim
  146. *> LDZ is INTEGER
  147. *> The leading dimension of the array Z. LDZ >= max(1,N).
  148. *> \endverbatim
  149. *>
  150. *> \param[out] INFO
  151. *> \verbatim
  152. *> INFO is INTEGER
  153. *> = 0: successful exit
  154. *> > 0: If INFO = i, DLAHQR failed to compute all the
  155. *> eigenvalues ILO to IHI in a total of 30 iterations
  156. *> per eigenvalue; elements i+1:ihi of WR and WI
  157. *> contain those eigenvalues which have been
  158. *> successfully computed.
  159. *>
  160. *> If INFO > 0 and WANTT is .FALSE., then on exit,
  161. *> the remaining unconverged eigenvalues are the
  162. *> eigenvalues of the upper Hessenberg matrix rows
  163. *> and columns ILO through INFO of the final, output
  164. *> value of H.
  165. *>
  166. *> If INFO > 0 and WANTT is .TRUE., then on exit
  167. *> (*) (initial value of H)*U = U*(final value of H)
  168. *> where U is an orthogonal matrix. The final
  169. *> value of H is upper Hessenberg and triangular in
  170. *> rows and columns INFO+1 through IHI.
  171. *>
  172. *> If INFO > 0 and WANTZ is .TRUE., then on exit
  173. *> (final value of Z) = (initial value of Z)*U
  174. *> where U is the orthogonal matrix in (*)
  175. *> (regardless of the value of WANTT.)
  176. *> \endverbatim
  177. *
  178. * Authors:
  179. * ========
  180. *
  181. *> \author Univ. of Tennessee
  182. *> \author Univ. of California Berkeley
  183. *> \author Univ. of Colorado Denver
  184. *> \author NAG Ltd.
  185. *
  186. *> \ingroup doubleOTHERauxiliary
  187. *
  188. *> \par Further Details:
  189. * =====================
  190. *>
  191. *> \verbatim
  192. *>
  193. *> 02-96 Based on modifications by
  194. *> David Day, Sandia National Laboratory, USA
  195. *>
  196. *> 12-04 Further modifications by
  197. *> Ralph Byers, University of Kansas, USA
  198. *> This is a modified version of DLAHQR from LAPACK version 3.0.
  199. *> It is (1) more robust against overflow and underflow and
  200. *> (2) adopts the more conservative Ahues & Tisseur stopping
  201. *> criterion (LAWN 122, 1997).
  202. *> \endverbatim
  203. *>
  204. * =====================================================================
  205. SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
  206. $ ILOZ, IHIZ, Z, LDZ, INFO )
  207. IMPLICIT NONE
  208. *
  209. * -- LAPACK auxiliary routine --
  210. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  211. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  212. *
  213. * .. Scalar Arguments ..
  214. INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
  215. LOGICAL WANTT, WANTZ
  216. * ..
  217. * .. Array Arguments ..
  218. DOUBLE PRECISION H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * )
  219. * ..
  220. *
  221. * =========================================================
  222. *
  223. * .. Parameters ..
  224. DOUBLE PRECISION ZERO, ONE, TWO
  225. PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0, TWO = 2.0d0 )
  226. DOUBLE PRECISION DAT1, DAT2
  227. PARAMETER ( DAT1 = 3.0d0 / 4.0d0, DAT2 = -0.4375d0 )
  228. INTEGER KEXSH
  229. PARAMETER ( KEXSH = 10 )
  230. * ..
  231. * .. Local Scalars ..
  232. DOUBLE PRECISION AA, AB, BA, BB, CS, DET, H11, H12, H21, H21S,
  233. $ H22, RT1I, RT1R, RT2I, RT2R, RTDISC, S, SAFMAX,
  234. $ SAFMIN, SMLNUM, SN, SUM, T1, T2, T3, TR, TST,
  235. $ ULP, V2, V3
  236. INTEGER I, I1, I2, ITS, ITMAX, J, K, L, M, NH, NR, NZ,
  237. $ KDEFL
  238. * ..
  239. * .. Local Arrays ..
  240. DOUBLE PRECISION V( 3 )
  241. * ..
  242. * .. External Functions ..
  243. DOUBLE PRECISION DLAMCH
  244. EXTERNAL DLAMCH
  245. * ..
  246. * .. External Subroutines ..
  247. EXTERNAL DCOPY, DLABAD, DLANV2, DLARFG, DROT
  248. * ..
  249. * .. Intrinsic Functions ..
  250. INTRINSIC ABS, DBLE, MAX, MIN, SQRT
  251. * ..
  252. * .. Executable Statements ..
  253. *
  254. INFO = 0
  255. *
  256. * Quick return if possible
  257. *
  258. IF( N.EQ.0 )
  259. $ RETURN
  260. IF( ILO.EQ.IHI ) THEN
  261. WR( ILO ) = H( ILO, ILO )
  262. WI( ILO ) = ZERO
  263. RETURN
  264. END IF
  265. *
  266. * ==== clear out the trash ====
  267. DO 10 J = ILO, IHI - 3
  268. H( J+2, J ) = ZERO
  269. H( J+3, J ) = ZERO
  270. 10 CONTINUE
  271. IF( ILO.LE.IHI-2 )
  272. $ H( IHI, IHI-2 ) = ZERO
  273. *
  274. NH = IHI - ILO + 1
  275. NZ = IHIZ - ILOZ + 1
  276. *
  277. * Set machine-dependent constants for the stopping criterion.
  278. *
  279. SAFMIN = DLAMCH( 'SAFE MINIMUM' )
  280. SAFMAX = ONE / SAFMIN
  281. CALL DLABAD( SAFMIN, SAFMAX )
  282. ULP = DLAMCH( 'PRECISION' )
  283. SMLNUM = SAFMIN*( DBLE( NH ) / ULP )
  284. *
  285. * I1 and I2 are the indices of the first row and last column of H
  286. * to which transformations must be applied. If eigenvalues only are
  287. * being computed, I1 and I2 are set inside the main loop.
  288. *
  289. IF( WANTT ) THEN
  290. I1 = 1
  291. I2 = N
  292. END IF
  293. *
  294. * ITMAX is the total number of QR iterations allowed.
  295. *
  296. ITMAX = 30 * MAX( 10, NH )
  297. *
  298. * KDEFL counts the number of iterations since a deflation
  299. *
  300. KDEFL = 0
  301. *
  302. * The main loop begins here. I is the loop index and decreases from
  303. * IHI to ILO in steps of 1 or 2. Each iteration of the loop works
  304. * with the active submatrix in rows and columns L to I.
  305. * Eigenvalues I+1 to IHI have already converged. Either L = ILO or
  306. * H(L,L-1) is negligible so that the matrix splits.
  307. *
  308. I = IHI
  309. 20 CONTINUE
  310. L = ILO
  311. IF( I.LT.ILO )
  312. $ GO TO 160
  313. *
  314. * Perform QR iterations on rows and columns ILO to I until a
  315. * submatrix of order 1 or 2 splits off at the bottom because a
  316. * subdiagonal element has become negligible.
  317. *
  318. DO 140 ITS = 0, ITMAX
  319. *
  320. * Look for a single small subdiagonal element.
  321. *
  322. DO 30 K = I, L + 1, -1
  323. IF( ABS( H( K, K-1 ) ).LE.SMLNUM )
  324. $ GO TO 40
  325. TST = ABS( H( K-1, K-1 ) ) + ABS( H( K, K ) )
  326. IF( TST.EQ.ZERO ) THEN
  327. IF( K-2.GE.ILO )
  328. $ TST = TST + ABS( H( K-1, K-2 ) )
  329. IF( K+1.LE.IHI )
  330. $ TST = TST + ABS( H( K+1, K ) )
  331. END IF
  332. * ==== The following is a conservative small subdiagonal
  333. * . deflation criterion due to Ahues & Tisseur (LAWN 122,
  334. * . 1997). It has better mathematical foundation and
  335. * . improves accuracy in some cases. ====
  336. IF( ABS( H( K, K-1 ) ).LE.ULP*TST ) THEN
  337. AB = MAX( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) )
  338. BA = MIN( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) )
  339. AA = MAX( ABS( H( K, K ) ),
  340. $ ABS( H( K-1, K-1 )-H( K, K ) ) )
  341. BB = MIN( ABS( H( K, K ) ),
  342. $ ABS( H( K-1, K-1 )-H( K, K ) ) )
  343. S = AA + AB
  344. IF( BA*( AB / S ).LE.MAX( SMLNUM,
  345. $ ULP*( BB*( AA / S ) ) ) )GO TO 40
  346. END IF
  347. 30 CONTINUE
  348. 40 CONTINUE
  349. L = K
  350. IF( L.GT.ILO ) THEN
  351. *
  352. * H(L,L-1) is negligible
  353. *
  354. H( L, L-1 ) = ZERO
  355. END IF
  356. *
  357. * Exit from loop if a submatrix of order 1 or 2 has split off.
  358. *
  359. IF( L.GE.I-1 )
  360. $ GO TO 150
  361. KDEFL = KDEFL + 1
  362. *
  363. * Now the active submatrix is in rows and columns L to I. If
  364. * eigenvalues only are being computed, only the active submatrix
  365. * need be transformed.
  366. *
  367. IF( .NOT.WANTT ) THEN
  368. I1 = L
  369. I2 = I
  370. END IF
  371. *
  372. IF( MOD(KDEFL,2*KEXSH).EQ.0 ) THEN
  373. *
  374. * Exceptional shift.
  375. *
  376. S = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
  377. H11 = DAT1*S + H( I, I )
  378. H12 = DAT2*S
  379. H21 = S
  380. H22 = H11
  381. ELSE IF( MOD(KDEFL,KEXSH).EQ.0 ) THEN
  382. *
  383. * Exceptional shift.
  384. *
  385. S = ABS( H( L+1, L ) ) + ABS( H( L+2, L+1 ) )
  386. H11 = DAT1*S + H( L, L )
  387. H12 = DAT2*S
  388. H21 = S
  389. H22 = H11
  390. ELSE
  391. *
  392. * Prepare to use Francis' double shift
  393. * (i.e. 2nd degree generalized Rayleigh quotient)
  394. *
  395. H11 = H( I-1, I-1 )
  396. H21 = H( I, I-1 )
  397. H12 = H( I-1, I )
  398. H22 = H( I, I )
  399. END IF
  400. S = ABS( H11 ) + ABS( H12 ) + ABS( H21 ) + ABS( H22 )
  401. IF( S.EQ.ZERO ) THEN
  402. RT1R = ZERO
  403. RT1I = ZERO
  404. RT2R = ZERO
  405. RT2I = ZERO
  406. ELSE
  407. H11 = H11 / S
  408. H21 = H21 / S
  409. H12 = H12 / S
  410. H22 = H22 / S
  411. TR = ( H11+H22 ) / TWO
  412. DET = ( H11-TR )*( H22-TR ) - H12*H21
  413. RTDISC = SQRT( ABS( DET ) )
  414. IF( DET.GE.ZERO ) THEN
  415. *
  416. * ==== complex conjugate shifts ====
  417. *
  418. RT1R = TR*S
  419. RT2R = RT1R
  420. RT1I = RTDISC*S
  421. RT2I = -RT1I
  422. ELSE
  423. *
  424. * ==== real shifts (use only one of them) ====
  425. *
  426. RT1R = TR + RTDISC
  427. RT2R = TR - RTDISC
  428. IF( ABS( RT1R-H22 ).LE.ABS( RT2R-H22 ) ) THEN
  429. RT1R = RT1R*S
  430. RT2R = RT1R
  431. ELSE
  432. RT2R = RT2R*S
  433. RT1R = RT2R
  434. END IF
  435. RT1I = ZERO
  436. RT2I = ZERO
  437. END IF
  438. END IF
  439. *
  440. * Look for two consecutive small subdiagonal elements.
  441. *
  442. DO 50 M = I - 2, L, -1
  443. * Determine the effect of starting the double-shift QR
  444. * iteration at row M, and see if this would make H(M,M-1)
  445. * negligible. (The following uses scaling to avoid
  446. * overflows and most underflows.)
  447. *
  448. H21S = H( M+1, M )
  449. S = ABS( H( M, M )-RT2R ) + ABS( RT2I ) + ABS( H21S )
  450. H21S = H( M+1, M ) / S
  451. V( 1 ) = H21S*H( M, M+1 ) + ( H( M, M )-RT1R )*
  452. $ ( ( H( M, M )-RT2R ) / S ) - RT1I*( RT2I / S )
  453. V( 2 ) = H21S*( H( M, M )+H( M+1, M+1 )-RT1R-RT2R )
  454. V( 3 ) = H21S*H( M+2, M+1 )
  455. S = ABS( V( 1 ) ) + ABS( V( 2 ) ) + ABS( V( 3 ) )
  456. V( 1 ) = V( 1 ) / S
  457. V( 2 ) = V( 2 ) / S
  458. V( 3 ) = V( 3 ) / S
  459. IF( M.EQ.L )
  460. $ GO TO 60
  461. IF( ABS( H( M, M-1 ) )*( ABS( V( 2 ) )+ABS( V( 3 ) ) ).LE.
  462. $ ULP*ABS( V( 1 ) )*( ABS( H( M-1, M-1 ) )+ABS( H( M,
  463. $ M ) )+ABS( H( M+1, M+1 ) ) ) )GO TO 60
  464. 50 CONTINUE
  465. 60 CONTINUE
  466. *
  467. * Double-shift QR step
  468. *
  469. DO 130 K = M, I - 1
  470. *
  471. * The first iteration of this loop determines a reflection G
  472. * from the vector V and applies it from left and right to H,
  473. * thus creating a nonzero bulge below the subdiagonal.
  474. *
  475. * Each subsequent iteration determines a reflection G to
  476. * restore the Hessenberg form in the (K-1)th column, and thus
  477. * chases the bulge one step toward the bottom of the active
  478. * submatrix. NR is the order of G.
  479. *
  480. NR = MIN( 3, I-K+1 )
  481. IF( K.GT.M )
  482. $ CALL DCOPY( NR, H( K, K-1 ), 1, V, 1 )
  483. CALL DLARFG( NR, V( 1 ), V( 2 ), 1, T1 )
  484. IF( K.GT.M ) THEN
  485. H( K, K-1 ) = V( 1 )
  486. H( K+1, K-1 ) = ZERO
  487. IF( K.LT.I-1 )
  488. $ H( K+2, K-1 ) = ZERO
  489. ELSE IF( M.GT.L ) THEN
  490. * ==== Use the following instead of
  491. * . H( K, K-1 ) = -H( K, K-1 ) to
  492. * . avoid a bug when v(2) and v(3)
  493. * . underflow. ====
  494. H( K, K-1 ) = H( K, K-1 )*( ONE-T1 )
  495. END IF
  496. V2 = V( 2 )
  497. T2 = T1*V2
  498. IF( NR.EQ.3 ) THEN
  499. V3 = V( 3 )
  500. T3 = T1*V3
  501. *
  502. * Apply G from the left to transform the rows of the matrix
  503. * in columns K to I2.
  504. *
  505. DO 70 J = K, I2
  506. SUM = H( K, J ) + V2*H( K+1, J ) + V3*H( K+2, J )
  507. H( K, J ) = H( K, J ) - SUM*T1
  508. H( K+1, J ) = H( K+1, J ) - SUM*T2
  509. H( K+2, J ) = H( K+2, J ) - SUM*T3
  510. 70 CONTINUE
  511. *
  512. * Apply G from the right to transform the columns of the
  513. * matrix in rows I1 to min(K+3,I).
  514. *
  515. DO 80 J = I1, MIN( K+3, I )
  516. SUM = H( J, K ) + V2*H( J, K+1 ) + V3*H( J, K+2 )
  517. H( J, K ) = H( J, K ) - SUM*T1
  518. H( J, K+1 ) = H( J, K+1 ) - SUM*T2
  519. H( J, K+2 ) = H( J, K+2 ) - SUM*T3
  520. 80 CONTINUE
  521. *
  522. IF( WANTZ ) THEN
  523. *
  524. * Accumulate transformations in the matrix Z
  525. *
  526. DO 90 J = ILOZ, IHIZ
  527. SUM = Z( J, K ) + V2*Z( J, K+1 ) + V3*Z( J, K+2 )
  528. Z( J, K ) = Z( J, K ) - SUM*T1
  529. Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
  530. Z( J, K+2 ) = Z( J, K+2 ) - SUM*T3
  531. 90 CONTINUE
  532. END IF
  533. ELSE IF( NR.EQ.2 ) THEN
  534. *
  535. * Apply G from the left to transform the rows of the matrix
  536. * in columns K to I2.
  537. *
  538. DO 100 J = K, I2
  539. SUM = H( K, J ) + V2*H( K+1, J )
  540. H( K, J ) = H( K, J ) - SUM*T1
  541. H( K+1, J ) = H( K+1, J ) - SUM*T2
  542. 100 CONTINUE
  543. *
  544. * Apply G from the right to transform the columns of the
  545. * matrix in rows I1 to min(K+3,I).
  546. *
  547. DO 110 J = I1, I
  548. SUM = H( J, K ) + V2*H( J, K+1 )
  549. H( J, K ) = H( J, K ) - SUM*T1
  550. H( J, K+1 ) = H( J, K+1 ) - SUM*T2
  551. 110 CONTINUE
  552. *
  553. IF( WANTZ ) THEN
  554. *
  555. * Accumulate transformations in the matrix Z
  556. *
  557. DO 120 J = ILOZ, IHIZ
  558. SUM = Z( J, K ) + V2*Z( J, K+1 )
  559. Z( J, K ) = Z( J, K ) - SUM*T1
  560. Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
  561. 120 CONTINUE
  562. END IF
  563. END IF
  564. 130 CONTINUE
  565. *
  566. 140 CONTINUE
  567. *
  568. * Failure to converge in remaining number of iterations
  569. *
  570. INFO = I
  571. RETURN
  572. *
  573. 150 CONTINUE
  574. *
  575. IF( L.EQ.I ) THEN
  576. *
  577. * H(I,I-1) is negligible: one eigenvalue has converged.
  578. *
  579. WR( I ) = H( I, I )
  580. WI( I ) = ZERO
  581. ELSE IF( L.EQ.I-1 ) THEN
  582. *
  583. * H(I-1,I-2) is negligible: a pair of eigenvalues have converged.
  584. *
  585. * Transform the 2-by-2 submatrix to standard Schur form,
  586. * and compute and store the eigenvalues.
  587. *
  588. CALL DLANV2( H( I-1, I-1 ), H( I-1, I ), H( I, I-1 ),
  589. $ H( I, I ), WR( I-1 ), WI( I-1 ), WR( I ), WI( I ),
  590. $ CS, SN )
  591. *
  592. IF( WANTT ) THEN
  593. *
  594. * Apply the transformation to the rest of H.
  595. *
  596. IF( I2.GT.I )
  597. $ CALL DROT( I2-I, H( I-1, I+1 ), LDH, H( I, I+1 ), LDH,
  598. $ CS, SN )
  599. CALL DROT( I-I1-1, H( I1, I-1 ), 1, H( I1, I ), 1, CS, SN )
  600. END IF
  601. IF( WANTZ ) THEN
  602. *
  603. * Apply the transformation to Z.
  604. *
  605. CALL DROT( NZ, Z( ILOZ, I-1 ), 1, Z( ILOZ, I ), 1, CS, SN )
  606. END IF
  607. END IF
  608. * reset deflation counter
  609. KDEFL = 0
  610. *
  611. * return to start of the main loop with new value of I.
  612. *
  613. I = L - 1
  614. GO TO 20
  615. *
  616. 160 CONTINUE
  617. RETURN
  618. *
  619. * End of DLAHQR
  620. *
  621. END