You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgelsd.f 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626
  1. *> \brief <b> DGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGELSD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
  22. * WORK, LWORK, IWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
  26. * DOUBLE PRECISION RCOND
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * )
  30. * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DGELSD computes the minimum-norm solution to a real linear least
  40. *> squares problem:
  41. *> minimize 2-norm(| b - A*x |)
  42. *> using the singular value decomposition (SVD) of A. A is an M-by-N
  43. *> matrix which may be rank-deficient.
  44. *>
  45. *> Several right hand side vectors b and solution vectors x can be
  46. *> handled in a single call; they are stored as the columns of the
  47. *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
  48. *> matrix X.
  49. *>
  50. *> The problem is solved in three steps:
  51. *> (1) Reduce the coefficient matrix A to bidiagonal form with
  52. *> Householder transformations, reducing the original problem
  53. *> into a "bidiagonal least squares problem" (BLS)
  54. *> (2) Solve the BLS using a divide and conquer approach.
  55. *> (3) Apply back all the Householder transformations to solve
  56. *> the original least squares problem.
  57. *>
  58. *> The effective rank of A is determined by treating as zero those
  59. *> singular values which are less than RCOND times the largest singular
  60. *> value.
  61. *>
  62. *> The divide and conquer algorithm makes very mild assumptions about
  63. *> floating point arithmetic. It will work on machines with a guard
  64. *> digit in add/subtract, or on those binary machines without guard
  65. *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
  66. *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
  67. *> without guard digits, but we know of none.
  68. *> \endverbatim
  69. *
  70. * Arguments:
  71. * ==========
  72. *
  73. *> \param[in] M
  74. *> \verbatim
  75. *> M is INTEGER
  76. *> The number of rows of A. M >= 0.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] N
  80. *> \verbatim
  81. *> N is INTEGER
  82. *> The number of columns of A. N >= 0.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] NRHS
  86. *> \verbatim
  87. *> NRHS is INTEGER
  88. *> The number of right hand sides, i.e., the number of columns
  89. *> of the matrices B and X. NRHS >= 0.
  90. *> \endverbatim
  91. *>
  92. *> \param[in,out] A
  93. *> \verbatim
  94. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  95. *> On entry, the M-by-N matrix A.
  96. *> On exit, A has been destroyed.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] LDA
  100. *> \verbatim
  101. *> LDA is INTEGER
  102. *> The leading dimension of the array A. LDA >= max(1,M).
  103. *> \endverbatim
  104. *>
  105. *> \param[in,out] B
  106. *> \verbatim
  107. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  108. *> On entry, the M-by-NRHS right hand side matrix B.
  109. *> On exit, B is overwritten by the N-by-NRHS solution
  110. *> matrix X. If m >= n and RANK = n, the residual
  111. *> sum-of-squares for the solution in the i-th column is given
  112. *> by the sum of squares of elements n+1:m in that column.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] LDB
  116. *> \verbatim
  117. *> LDB is INTEGER
  118. *> The leading dimension of the array B. LDB >= max(1,max(M,N)).
  119. *> \endverbatim
  120. *>
  121. *> \param[out] S
  122. *> \verbatim
  123. *> S is DOUBLE PRECISION array, dimension (min(M,N))
  124. *> The singular values of A in decreasing order.
  125. *> The condition number of A in the 2-norm = S(1)/S(min(m,n)).
  126. *> \endverbatim
  127. *>
  128. *> \param[in] RCOND
  129. *> \verbatim
  130. *> RCOND is DOUBLE PRECISION
  131. *> RCOND is used to determine the effective rank of A.
  132. *> Singular values S(i) <= RCOND*S(1) are treated as zero.
  133. *> If RCOND < 0, machine precision is used instead.
  134. *> \endverbatim
  135. *>
  136. *> \param[out] RANK
  137. *> \verbatim
  138. *> RANK is INTEGER
  139. *> The effective rank of A, i.e., the number of singular values
  140. *> which are greater than RCOND*S(1).
  141. *> \endverbatim
  142. *>
  143. *> \param[out] WORK
  144. *> \verbatim
  145. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  146. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  147. *> \endverbatim
  148. *>
  149. *> \param[in] LWORK
  150. *> \verbatim
  151. *> LWORK is INTEGER
  152. *> The dimension of the array WORK. LWORK must be at least 1.
  153. *> The exact minimum amount of workspace needed depends on M,
  154. *> N and NRHS. As long as LWORK is at least
  155. *> 12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
  156. *> if M is greater than or equal to N or
  157. *> 12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
  158. *> if M is less than N, the code will execute correctly.
  159. *> SMLSIZ is returned by ILAENV and is equal to the maximum
  160. *> size of the subproblems at the bottom of the computation
  161. *> tree (usually about 25), and
  162. *> NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
  163. *> For good performance, LWORK should generally be larger.
  164. *>
  165. *> If LWORK = -1, then a workspace query is assumed; the routine
  166. *> only calculates the optimal size of the WORK array, returns
  167. *> this value as the first entry of the WORK array, and no error
  168. *> message related to LWORK is issued by XERBLA.
  169. *> \endverbatim
  170. *>
  171. *> \param[out] IWORK
  172. *> \verbatim
  173. *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  174. *> LIWORK >= max(1, 3 * MINMN * NLVL + 11 * MINMN),
  175. *> where MINMN = MIN( M,N ).
  176. *> On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
  177. *> \endverbatim
  178. *>
  179. *> \param[out] INFO
  180. *> \verbatim
  181. *> INFO is INTEGER
  182. *> = 0: successful exit
  183. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  184. *> > 0: the algorithm for computing the SVD failed to converge;
  185. *> if INFO = i, i off-diagonal elements of an intermediate
  186. *> bidiagonal form did not converge to zero.
  187. *> \endverbatim
  188. *
  189. * Authors:
  190. * ========
  191. *
  192. *> \author Univ. of Tennessee
  193. *> \author Univ. of California Berkeley
  194. *> \author Univ. of Colorado Denver
  195. *> \author NAG Ltd.
  196. *
  197. *> \ingroup doubleGEsolve
  198. *
  199. *> \par Contributors:
  200. * ==================
  201. *>
  202. *> Ming Gu and Ren-Cang Li, Computer Science Division, University of
  203. *> California at Berkeley, USA \n
  204. *> Osni Marques, LBNL/NERSC, USA \n
  205. *
  206. * =====================================================================
  207. SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
  208. $ WORK, LWORK, IWORK, INFO )
  209. *
  210. * -- LAPACK driver routine --
  211. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  212. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  213. *
  214. * .. Scalar Arguments ..
  215. INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
  216. DOUBLE PRECISION RCOND
  217. * ..
  218. * .. Array Arguments ..
  219. INTEGER IWORK( * )
  220. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
  221. * ..
  222. *
  223. * =====================================================================
  224. *
  225. * .. Parameters ..
  226. DOUBLE PRECISION ZERO, ONE, TWO
  227. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
  228. * ..
  229. * .. Local Scalars ..
  230. LOGICAL LQUERY
  231. INTEGER IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
  232. $ LDWORK, LIWORK, MAXMN, MAXWRK, MINMN, MINWRK,
  233. $ MM, MNTHR, NLVL, NWORK, SMLSIZ, WLALSD
  234. DOUBLE PRECISION ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
  235. * ..
  236. * .. External Subroutines ..
  237. EXTERNAL DGEBRD, DGELQF, DGEQRF, DLABAD, DLACPY, DLALSD,
  238. $ DLASCL, DLASET, DORMBR, DORMLQ, DORMQR, XERBLA
  239. * ..
  240. * .. External Functions ..
  241. INTEGER ILAENV
  242. DOUBLE PRECISION DLAMCH, DLANGE
  243. EXTERNAL ILAENV, DLAMCH, DLANGE
  244. * ..
  245. * .. Intrinsic Functions ..
  246. INTRINSIC DBLE, INT, LOG, MAX, MIN
  247. * ..
  248. * .. Executable Statements ..
  249. *
  250. * Test the input arguments.
  251. *
  252. INFO = 0
  253. MINMN = MIN( M, N )
  254. MAXMN = MAX( M, N )
  255. MNTHR = ILAENV( 6, 'DGELSD', ' ', M, N, NRHS, -1 )
  256. LQUERY = ( LWORK.EQ.-1 )
  257. IF( M.LT.0 ) THEN
  258. INFO = -1
  259. ELSE IF( N.LT.0 ) THEN
  260. INFO = -2
  261. ELSE IF( NRHS.LT.0 ) THEN
  262. INFO = -3
  263. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  264. INFO = -5
  265. ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
  266. INFO = -7
  267. END IF
  268. *
  269. SMLSIZ = ILAENV( 9, 'DGELSD', ' ', 0, 0, 0, 0 )
  270. *
  271. * Compute workspace.
  272. * (Note: Comments in the code beginning "Workspace:" describe the
  273. * minimal amount of workspace needed at that point in the code,
  274. * as well as the preferred amount for good performance.
  275. * NB refers to the optimal block size for the immediately
  276. * following subroutine, as returned by ILAENV.)
  277. *
  278. MINWRK = 1
  279. LIWORK = 1
  280. MINMN = MAX( 1, MINMN )
  281. NLVL = MAX( INT( LOG( DBLE( MINMN ) / DBLE( SMLSIZ+1 ) ) /
  282. $ LOG( TWO ) ) + 1, 0 )
  283. *
  284. IF( INFO.EQ.0 ) THEN
  285. MAXWRK = 0
  286. LIWORK = 3*MINMN*NLVL + 11*MINMN
  287. MM = M
  288. IF( M.GE.N .AND. M.GE.MNTHR ) THEN
  289. *
  290. * Path 1a - overdetermined, with many more rows than columns.
  291. *
  292. MM = N
  293. MAXWRK = MAX( MAXWRK, N+N*ILAENV( 1, 'DGEQRF', ' ', M, N,
  294. $ -1, -1 ) )
  295. MAXWRK = MAX( MAXWRK, N+NRHS*
  296. $ ILAENV( 1, 'DORMQR', 'LT', M, NRHS, N, -1 ) )
  297. END IF
  298. IF( M.GE.N ) THEN
  299. *
  300. * Path 1 - overdetermined or exactly determined.
  301. *
  302. MAXWRK = MAX( MAXWRK, 3*N+( MM+N )*
  303. $ ILAENV( 1, 'DGEBRD', ' ', MM, N, -1, -1 ) )
  304. MAXWRK = MAX( MAXWRK, 3*N+NRHS*
  305. $ ILAENV( 1, 'DORMBR', 'QLT', MM, NRHS, N, -1 ) )
  306. MAXWRK = MAX( MAXWRK, 3*N+( N-1 )*
  307. $ ILAENV( 1, 'DORMBR', 'PLN', N, NRHS, N, -1 ) )
  308. WLALSD = 9*N+2*N*SMLSIZ+8*N*NLVL+N*NRHS+(SMLSIZ+1)**2
  309. MAXWRK = MAX( MAXWRK, 3*N+WLALSD )
  310. MINWRK = MAX( 3*N+MM, 3*N+NRHS, 3*N+WLALSD )
  311. END IF
  312. IF( N.GT.M ) THEN
  313. WLALSD = 9*M+2*M*SMLSIZ+8*M*NLVL+M*NRHS+(SMLSIZ+1)**2
  314. IF( N.GE.MNTHR ) THEN
  315. *
  316. * Path 2a - underdetermined, with many more columns
  317. * than rows.
  318. *
  319. MAXWRK = M + M*ILAENV( 1, 'DGELQF', ' ', M, N, -1, -1 )
  320. MAXWRK = MAX( MAXWRK, M*M+4*M+2*M*
  321. $ ILAENV( 1, 'DGEBRD', ' ', M, M, -1, -1 ) )
  322. MAXWRK = MAX( MAXWRK, M*M+4*M+NRHS*
  323. $ ILAENV( 1, 'DORMBR', 'QLT', M, NRHS, M, -1 ) )
  324. MAXWRK = MAX( MAXWRK, M*M+4*M+( M-1 )*
  325. $ ILAENV( 1, 'DORMBR', 'PLN', M, NRHS, M, -1 ) )
  326. IF( NRHS.GT.1 ) THEN
  327. MAXWRK = MAX( MAXWRK, M*M+M+M*NRHS )
  328. ELSE
  329. MAXWRK = MAX( MAXWRK, M*M+2*M )
  330. END IF
  331. MAXWRK = MAX( MAXWRK, M+NRHS*
  332. $ ILAENV( 1, 'DORMLQ', 'LT', N, NRHS, M, -1 ) )
  333. MAXWRK = MAX( MAXWRK, M*M+4*M+WLALSD )
  334. ! XXX: Ensure the Path 2a case below is triggered. The workspace
  335. ! calculation should use queries for all routines eventually.
  336. MAXWRK = MAX( MAXWRK,
  337. $ 4*M+M*M+MAX( M, 2*M-4, NRHS, N-3*M ) )
  338. ELSE
  339. *
  340. * Path 2 - remaining underdetermined cases.
  341. *
  342. MAXWRK = 3*M + ( N+M )*ILAENV( 1, 'DGEBRD', ' ', M, N,
  343. $ -1, -1 )
  344. MAXWRK = MAX( MAXWRK, 3*M+NRHS*
  345. $ ILAENV( 1, 'DORMBR', 'QLT', M, NRHS, N, -1 ) )
  346. MAXWRK = MAX( MAXWRK, 3*M+M*
  347. $ ILAENV( 1, 'DORMBR', 'PLN', N, NRHS, M, -1 ) )
  348. MAXWRK = MAX( MAXWRK, 3*M+WLALSD )
  349. END IF
  350. MINWRK = MAX( 3*M+NRHS, 3*M+M, 3*M+WLALSD )
  351. END IF
  352. MINWRK = MIN( MINWRK, MAXWRK )
  353. WORK( 1 ) = MAXWRK
  354. IWORK( 1 ) = LIWORK
  355. IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  356. INFO = -12
  357. END IF
  358. END IF
  359. *
  360. IF( INFO.NE.0 ) THEN
  361. CALL XERBLA( 'DGELSD', -INFO )
  362. RETURN
  363. ELSE IF( LQUERY ) THEN
  364. GO TO 10
  365. END IF
  366. *
  367. * Quick return if possible.
  368. *
  369. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  370. RANK = 0
  371. RETURN
  372. END IF
  373. *
  374. * Get machine parameters.
  375. *
  376. EPS = DLAMCH( 'P' )
  377. SFMIN = DLAMCH( 'S' )
  378. SMLNUM = SFMIN / EPS
  379. BIGNUM = ONE / SMLNUM
  380. CALL DLABAD( SMLNUM, BIGNUM )
  381. *
  382. * Scale A if max entry outside range [SMLNUM,BIGNUM].
  383. *
  384. ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
  385. IASCL = 0
  386. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  387. *
  388. * Scale matrix norm up to SMLNUM.
  389. *
  390. CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  391. IASCL = 1
  392. ELSE IF( ANRM.GT.BIGNUM ) THEN
  393. *
  394. * Scale matrix norm down to BIGNUM.
  395. *
  396. CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  397. IASCL = 2
  398. ELSE IF( ANRM.EQ.ZERO ) THEN
  399. *
  400. * Matrix all zero. Return zero solution.
  401. *
  402. CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
  403. CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
  404. RANK = 0
  405. GO TO 10
  406. END IF
  407. *
  408. * Scale B if max entry outside range [SMLNUM,BIGNUM].
  409. *
  410. BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
  411. IBSCL = 0
  412. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  413. *
  414. * Scale matrix norm up to SMLNUM.
  415. *
  416. CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
  417. IBSCL = 1
  418. ELSE IF( BNRM.GT.BIGNUM ) THEN
  419. *
  420. * Scale matrix norm down to BIGNUM.
  421. *
  422. CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
  423. IBSCL = 2
  424. END IF
  425. *
  426. * If M < N make sure certain entries of B are zero.
  427. *
  428. IF( M.LT.N )
  429. $ CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
  430. *
  431. * Overdetermined case.
  432. *
  433. IF( M.GE.N ) THEN
  434. *
  435. * Path 1 - overdetermined or exactly determined.
  436. *
  437. MM = M
  438. IF( M.GE.MNTHR ) THEN
  439. *
  440. * Path 1a - overdetermined, with many more rows than columns.
  441. *
  442. MM = N
  443. ITAU = 1
  444. NWORK = ITAU + N
  445. *
  446. * Compute A=Q*R.
  447. * (Workspace: need 2*N, prefer N+N*NB)
  448. *
  449. CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  450. $ LWORK-NWORK+1, INFO )
  451. *
  452. * Multiply B by transpose(Q).
  453. * (Workspace: need N+NRHS, prefer N+NRHS*NB)
  454. *
  455. CALL DORMQR( 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAU ), B,
  456. $ LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  457. *
  458. * Zero out below R.
  459. *
  460. IF( N.GT.1 ) THEN
  461. CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
  462. END IF
  463. END IF
  464. *
  465. IE = 1
  466. ITAUQ = IE + N
  467. ITAUP = ITAUQ + N
  468. NWORK = ITAUP + N
  469. *
  470. * Bidiagonalize R in A.
  471. * (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
  472. *
  473. CALL DGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
  474. $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  475. $ INFO )
  476. *
  477. * Multiply B by transpose of left bidiagonalizing vectors of R.
  478. * (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
  479. *
  480. CALL DORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
  481. $ B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  482. *
  483. * Solve the bidiagonal least squares problem.
  484. *
  485. CALL DLALSD( 'U', SMLSIZ, N, NRHS, S, WORK( IE ), B, LDB,
  486. $ RCOND, RANK, WORK( NWORK ), IWORK, INFO )
  487. IF( INFO.NE.0 ) THEN
  488. GO TO 10
  489. END IF
  490. *
  491. * Multiply B by right bidiagonalizing vectors of R.
  492. *
  493. CALL DORMBR( 'P', 'L', 'N', N, NRHS, N, A, LDA, WORK( ITAUP ),
  494. $ B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  495. *
  496. ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
  497. $ MAX( M, 2*M-4, NRHS, N-3*M, WLALSD ) ) THEN
  498. *
  499. * Path 2a - underdetermined, with many more columns than rows
  500. * and sufficient workspace for an efficient algorithm.
  501. *
  502. LDWORK = M
  503. IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
  504. $ M*LDA+M+M*NRHS, 4*M+M*LDA+WLALSD ) )LDWORK = LDA
  505. ITAU = 1
  506. NWORK = M + 1
  507. *
  508. * Compute A=L*Q.
  509. * (Workspace: need 2*M, prefer M+M*NB)
  510. *
  511. CALL DGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  512. $ LWORK-NWORK+1, INFO )
  513. IL = NWORK
  514. *
  515. * Copy L to WORK(IL), zeroing out above its diagonal.
  516. *
  517. CALL DLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
  518. CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( IL+LDWORK ),
  519. $ LDWORK )
  520. IE = IL + LDWORK*M
  521. ITAUQ = IE + M
  522. ITAUP = ITAUQ + M
  523. NWORK = ITAUP + M
  524. *
  525. * Bidiagonalize L in WORK(IL).
  526. * (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
  527. *
  528. CALL DGEBRD( M, M, WORK( IL ), LDWORK, S, WORK( IE ),
  529. $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
  530. $ LWORK-NWORK+1, INFO )
  531. *
  532. * Multiply B by transpose of left bidiagonalizing vectors of L.
  533. * (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
  534. *
  535. CALL DORMBR( 'Q', 'L', 'T', M, NRHS, M, WORK( IL ), LDWORK,
  536. $ WORK( ITAUQ ), B, LDB, WORK( NWORK ),
  537. $ LWORK-NWORK+1, INFO )
  538. *
  539. * Solve the bidiagonal least squares problem.
  540. *
  541. CALL DLALSD( 'U', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
  542. $ RCOND, RANK, WORK( NWORK ), IWORK, INFO )
  543. IF( INFO.NE.0 ) THEN
  544. GO TO 10
  545. END IF
  546. *
  547. * Multiply B by right bidiagonalizing vectors of L.
  548. *
  549. CALL DORMBR( 'P', 'L', 'N', M, NRHS, M, WORK( IL ), LDWORK,
  550. $ WORK( ITAUP ), B, LDB, WORK( NWORK ),
  551. $ LWORK-NWORK+1, INFO )
  552. *
  553. * Zero out below first M rows of B.
  554. *
  555. CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
  556. NWORK = ITAU + M
  557. *
  558. * Multiply transpose(Q) by B.
  559. * (Workspace: need M+NRHS, prefer M+NRHS*NB)
  560. *
  561. CALL DORMLQ( 'L', 'T', N, NRHS, M, A, LDA, WORK( ITAU ), B,
  562. $ LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  563. *
  564. ELSE
  565. *
  566. * Path 2 - remaining underdetermined cases.
  567. *
  568. IE = 1
  569. ITAUQ = IE + M
  570. ITAUP = ITAUQ + M
  571. NWORK = ITAUP + M
  572. *
  573. * Bidiagonalize A.
  574. * (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
  575. *
  576. CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
  577. $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  578. $ INFO )
  579. *
  580. * Multiply B by transpose of left bidiagonalizing vectors.
  581. * (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
  582. *
  583. CALL DORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAUQ ),
  584. $ B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  585. *
  586. * Solve the bidiagonal least squares problem.
  587. *
  588. CALL DLALSD( 'L', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
  589. $ RCOND, RANK, WORK( NWORK ), IWORK, INFO )
  590. IF( INFO.NE.0 ) THEN
  591. GO TO 10
  592. END IF
  593. *
  594. * Multiply B by right bidiagonalizing vectors of A.
  595. *
  596. CALL DORMBR( 'P', 'L', 'N', N, NRHS, M, A, LDA, WORK( ITAUP ),
  597. $ B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  598. *
  599. END IF
  600. *
  601. * Undo scaling.
  602. *
  603. IF( IASCL.EQ.1 ) THEN
  604. CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
  605. CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
  606. $ INFO )
  607. ELSE IF( IASCL.EQ.2 ) THEN
  608. CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
  609. CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
  610. $ INFO )
  611. END IF
  612. IF( IBSCL.EQ.1 ) THEN
  613. CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
  614. ELSE IF( IBSCL.EQ.2 ) THEN
  615. CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
  616. END IF
  617. *
  618. 10 CONTINUE
  619. WORK( 1 ) = MAXWRK
  620. IWORK( 1 ) = LIWORK
  621. RETURN
  622. *
  623. * End of DGELSD
  624. *
  625. END