You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cuncsd2by1.f 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779
  1. *> \brief \b CUNCSD2BY1
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CUNCSD2BY1 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cuncsd2by1.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cuncsd2by1.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cuncsd2by1.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  22. * X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  23. * LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
  24. * INFO )
  25. *
  26. * .. Scalar Arguments ..
  27. * CHARACTER JOBU1, JOBU2, JOBV1T
  28. * INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  29. * $ M, P, Q
  30. * INTEGER LRWORK, LRWORKMIN, LRWORKOPT
  31. * ..
  32. * .. Array Arguments ..
  33. * REAL RWORK(*)
  34. * REAL THETA(*)
  35. * COMPLEX U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  36. * $ X11(LDX11,*), X21(LDX21,*)
  37. * INTEGER IWORK(*)
  38. * ..
  39. *
  40. *
  41. *> \par Purpose:
  42. * =============
  43. *>
  44. *>\verbatim
  45. *>
  46. *> CUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
  47. *> orthonormal columns that has been partitioned into a 2-by-1 block
  48. *> structure:
  49. *>
  50. *> [ I1 0 0 ]
  51. *> [ 0 C 0 ]
  52. *> [ X11 ] [ U1 | ] [ 0 0 0 ]
  53. *> X = [-----] = [---------] [----------] V1**T .
  54. *> [ X21 ] [ | U2 ] [ 0 0 0 ]
  55. *> [ 0 S 0 ]
  56. *> [ 0 0 I2]
  57. *>
  58. *> X11 is P-by-Q. The unitary matrices U1, U2, and V1 are P-by-P,
  59. *> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R
  60. *> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which
  61. *> R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a
  62. *> K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0).
  63. *>
  64. *> \endverbatim
  65. *
  66. * Arguments:
  67. * ==========
  68. *
  69. *> \param[in] JOBU1
  70. *> \verbatim
  71. *> JOBU1 is CHARACTER
  72. *> = 'Y': U1 is computed;
  73. *> otherwise: U1 is not computed.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] JOBU2
  77. *> \verbatim
  78. *> JOBU2 is CHARACTER
  79. *> = 'Y': U2 is computed;
  80. *> otherwise: U2 is not computed.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] JOBV1T
  84. *> \verbatim
  85. *> JOBV1T is CHARACTER
  86. *> = 'Y': V1T is computed;
  87. *> otherwise: V1T is not computed.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] M
  91. *> \verbatim
  92. *> M is INTEGER
  93. *> The number of rows in X.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] P
  97. *> \verbatim
  98. *> P is INTEGER
  99. *> The number of rows in X11. 0 <= P <= M.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] Q
  103. *> \verbatim
  104. *> Q is INTEGER
  105. *> The number of columns in X11 and X21. 0 <= Q <= M.
  106. *> \endverbatim
  107. *>
  108. *> \param[in,out] X11
  109. *> \verbatim
  110. *> X11 is COMPLEX array, dimension (LDX11,Q)
  111. *> On entry, part of the unitary matrix whose CSD is desired.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] LDX11
  115. *> \verbatim
  116. *> LDX11 is INTEGER
  117. *> The leading dimension of X11. LDX11 >= MAX(1,P).
  118. *> \endverbatim
  119. *>
  120. *> \param[in,out] X21
  121. *> \verbatim
  122. *> X21 is COMPLEX array, dimension (LDX21,Q)
  123. *> On entry, part of the unitary matrix whose CSD is desired.
  124. *> \endverbatim
  125. *>
  126. *> \param[in] LDX21
  127. *> \verbatim
  128. *> LDX21 is INTEGER
  129. *> The leading dimension of X21. LDX21 >= MAX(1,M-P).
  130. *> \endverbatim
  131. *>
  132. *> \param[out] THETA
  133. *> \verbatim
  134. *> THETA is REAL array, dimension (R), in which R =
  135. *> MIN(P,M-P,Q,M-Q).
  136. *> C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  137. *> S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  138. *> \endverbatim
  139. *>
  140. *> \param[out] U1
  141. *> \verbatim
  142. *> U1 is COMPLEX array, dimension (P)
  143. *> If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
  144. *> \endverbatim
  145. *>
  146. *> \param[in] LDU1
  147. *> \verbatim
  148. *> LDU1 is INTEGER
  149. *> The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  150. *> MAX(1,P).
  151. *> \endverbatim
  152. *>
  153. *> \param[out] U2
  154. *> \verbatim
  155. *> U2 is COMPLEX array, dimension (M-P)
  156. *> If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
  157. *> matrix U2.
  158. *> \endverbatim
  159. *>
  160. *> \param[in] LDU2
  161. *> \verbatim
  162. *> LDU2 is INTEGER
  163. *> The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  164. *> MAX(1,M-P).
  165. *> \endverbatim
  166. *>
  167. *> \param[out] V1T
  168. *> \verbatim
  169. *> V1T is COMPLEX array, dimension (Q)
  170. *> If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
  171. *> matrix V1**T.
  172. *> \endverbatim
  173. *>
  174. *> \param[in] LDV1T
  175. *> \verbatim
  176. *> LDV1T is INTEGER
  177. *> The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  178. *> MAX(1,Q).
  179. *> \endverbatim
  180. *>
  181. *> \param[out] WORK
  182. *> \verbatim
  183. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  184. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  185. *> \endverbatim
  186. *>
  187. *> \param[in] LWORK
  188. *> \verbatim
  189. *> LWORK is INTEGER
  190. *> The dimension of the array WORK.
  191. *>
  192. *> If LWORK = -1, then a workspace query is assumed; the routine
  193. *> only calculates the optimal size of the WORK and RWORK
  194. *> arrays, returns this value as the first entry of the WORK
  195. *> and RWORK array, respectively, and no error message related
  196. *> to LWORK or LRWORK is issued by XERBLA.
  197. *> \endverbatim
  198. *>
  199. *> \param[out] RWORK
  200. *> \verbatim
  201. *> RWORK is REAL array, dimension (MAX(1,LRWORK))
  202. *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
  203. *> If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
  204. *> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  205. *> define the matrix in intermediate bidiagonal-block form
  206. *> remaining after nonconvergence. INFO specifies the number
  207. *> of nonzero PHI's.
  208. *> \endverbatim
  209. *>
  210. *> \param[in] LRWORK
  211. *> \verbatim
  212. *> LRWORK is INTEGER
  213. *> The dimension of the array RWORK.
  214. *>
  215. *> If LRWORK = -1, then a workspace query is assumed; the routine
  216. *> only calculates the optimal size of the WORK and RWORK
  217. *> arrays, returns this value as the first entry of the WORK
  218. *> and RWORK array, respectively, and no error message related
  219. *> to LWORK or LRWORK is issued by XERBLA.
  220. *> \endverbatim
  221. *
  222. *> \param[out] IWORK
  223. *> \verbatim
  224. *> IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
  225. *> \endverbatim
  226. *>
  227. *> \param[out] INFO
  228. *> \verbatim
  229. *> INFO is INTEGER
  230. *> = 0: successful exit.
  231. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  232. *> > 0: CBBCSD did not converge. See the description of WORK
  233. *> above for details.
  234. *> \endverbatim
  235. *
  236. *> \par References:
  237. * ================
  238. *>
  239. *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  240. *> Algorithms, 50(1):33-65, 2009.
  241. *
  242. * Authors:
  243. * ========
  244. *
  245. *> \author Univ. of Tennessee
  246. *> \author Univ. of California Berkeley
  247. *> \author Univ. of Colorado Denver
  248. *> \author NAG Ltd.
  249. *
  250. *> \ingroup complexOTHERcomputational
  251. *
  252. * =====================================================================
  253. SUBROUTINE CUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  254. $ X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  255. $ LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
  256. $ INFO )
  257. *
  258. * -- LAPACK computational routine --
  259. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  260. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  261. *
  262. * .. Scalar Arguments ..
  263. CHARACTER JOBU1, JOBU2, JOBV1T
  264. INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  265. $ M, P, Q
  266. INTEGER LRWORK, LRWORKMIN, LRWORKOPT
  267. * ..
  268. * .. Array Arguments ..
  269. REAL RWORK(*)
  270. REAL THETA(*)
  271. COMPLEX U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  272. $ X11(LDX11,*), X21(LDX21,*)
  273. INTEGER IWORK(*)
  274. * ..
  275. *
  276. * =====================================================================
  277. *
  278. * .. Parameters ..
  279. COMPLEX ONE, ZERO
  280. PARAMETER ( ONE = (1.0E0,0.0E0), ZERO = (0.0E0,0.0E0) )
  281. * ..
  282. * .. Local Scalars ..
  283. INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  284. $ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  285. $ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  286. $ J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
  287. $ LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
  288. $ LWORKMIN, LWORKOPT, R
  289. LOGICAL LQUERY, WANTU1, WANTU2, WANTV1T
  290. * ..
  291. * .. Local Arrays ..
  292. REAL DUM( 1 )
  293. COMPLEX CDUM( 1, 1 )
  294. * ..
  295. * .. External Subroutines ..
  296. EXTERNAL CBBCSD, CCOPY, CLACPY, CLAPMR, CLAPMT, CUNBDB1,
  297. $ CUNBDB2, CUNBDB3, CUNBDB4, CUNGLQ, CUNGQR,
  298. $ XERBLA
  299. * ..
  300. * .. External Functions ..
  301. LOGICAL LSAME
  302. EXTERNAL LSAME
  303. * ..
  304. * .. Intrinsic Function ..
  305. INTRINSIC INT, MAX, MIN
  306. * ..
  307. * .. Executable Statements ..
  308. *
  309. * Test input arguments
  310. *
  311. INFO = 0
  312. WANTU1 = LSAME( JOBU1, 'Y' )
  313. WANTU2 = LSAME( JOBU2, 'Y' )
  314. WANTV1T = LSAME( JOBV1T, 'Y' )
  315. LQUERY = ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 )
  316. *
  317. IF( M .LT. 0 ) THEN
  318. INFO = -4
  319. ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  320. INFO = -5
  321. ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  322. INFO = -6
  323. ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  324. INFO = -8
  325. ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  326. INFO = -10
  327. ELSE IF( WANTU1 .AND. LDU1 .LT. MAX( 1, P ) ) THEN
  328. INFO = -13
  329. ELSE IF( WANTU2 .AND. LDU2 .LT. MAX( 1, M - P ) ) THEN
  330. INFO = -15
  331. ELSE IF( WANTV1T .AND. LDV1T .LT. MAX( 1, Q ) ) THEN
  332. INFO = -17
  333. END IF
  334. *
  335. R = MIN( P, M-P, Q, M-Q )
  336. *
  337. * Compute workspace
  338. *
  339. * WORK layout:
  340. * |-----------------------------------------|
  341. * | LWORKOPT (1) |
  342. * |-----------------------------------------|
  343. * | TAUP1 (MAX(1,P)) |
  344. * | TAUP2 (MAX(1,M-P)) |
  345. * | TAUQ1 (MAX(1,Q)) |
  346. * |-----------------------------------------|
  347. * | CUNBDB WORK | CUNGQR WORK | CUNGLQ WORK |
  348. * | | | |
  349. * | | | |
  350. * | | | |
  351. * | | | |
  352. * |-----------------------------------------|
  353. * RWORK layout:
  354. * |------------------|
  355. * | LRWORKOPT (1) |
  356. * |------------------|
  357. * | PHI (MAX(1,R-1)) |
  358. * |------------------|
  359. * | B11D (R) |
  360. * | B11E (R-1) |
  361. * | B12D (R) |
  362. * | B12E (R-1) |
  363. * | B21D (R) |
  364. * | B21E (R-1) |
  365. * | B22D (R) |
  366. * | B22E (R-1) |
  367. * | CBBCSD RWORK |
  368. * |------------------|
  369. *
  370. IF( INFO .EQ. 0 ) THEN
  371. IPHI = 2
  372. IB11D = IPHI + MAX( 1, R-1 )
  373. IB11E = IB11D + MAX( 1, R )
  374. IB12D = IB11E + MAX( 1, R - 1 )
  375. IB12E = IB12D + MAX( 1, R )
  376. IB21D = IB12E + MAX( 1, R - 1 )
  377. IB21E = IB21D + MAX( 1, R )
  378. IB22D = IB21E + MAX( 1, R - 1 )
  379. IB22E = IB22D + MAX( 1, R )
  380. IBBCSD = IB22E + MAX( 1, R - 1 )
  381. ITAUP1 = 2
  382. ITAUP2 = ITAUP1 + MAX( 1, P )
  383. ITAUQ1 = ITAUP2 + MAX( 1, M-P )
  384. IORBDB = ITAUQ1 + MAX( 1, Q )
  385. IORGQR = ITAUQ1 + MAX( 1, Q )
  386. IORGLQ = ITAUQ1 + MAX( 1, Q )
  387. LORGQRMIN = 1
  388. LORGQROPT = 1
  389. LORGLQMIN = 1
  390. LORGLQOPT = 1
  391. IF( R .EQ. Q ) THEN
  392. CALL CUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  393. $ DUM, CDUM, CDUM, CDUM, WORK, -1,
  394. $ CHILDINFO )
  395. LORBDB = INT( WORK(1) )
  396. IF( WANTU1 .AND. P .GT. 0 ) THEN
  397. CALL CUNGQR( P, P, Q, U1, LDU1, CDUM, WORK(1), -1,
  398. $ CHILDINFO )
  399. LORGQRMIN = MAX( LORGQRMIN, P )
  400. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  401. ENDIF
  402. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  403. CALL CUNGQR( M-P, M-P, Q, U2, LDU2, CDUM, WORK(1), -1,
  404. $ CHILDINFO )
  405. LORGQRMIN = MAX( LORGQRMIN, M-P )
  406. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  407. END IF
  408. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  409. CALL CUNGLQ( Q-1, Q-1, Q-1, V1T, LDV1T,
  410. $ CDUM, WORK(1), -1, CHILDINFO )
  411. LORGLQMIN = MAX( LORGLQMIN, Q-1 )
  412. LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  413. END IF
  414. CALL CBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  415. $ DUM(1), U1, LDU1, U2, LDU2, V1T, LDV1T, CDUM,
  416. $ 1, DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  417. $ RWORK(1), -1, CHILDINFO )
  418. LBBCSD = INT( RWORK(1) )
  419. ELSE IF( R .EQ. P ) THEN
  420. CALL CUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  421. $ CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO )
  422. LORBDB = INT( WORK(1) )
  423. IF( WANTU1 .AND. P .GT. 0 ) THEN
  424. CALL CUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, CDUM, WORK(1),
  425. $ -1, CHILDINFO )
  426. LORGQRMIN = MAX( LORGQRMIN, P-1 )
  427. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  428. END IF
  429. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  430. CALL CUNGQR( M-P, M-P, Q, U2, LDU2, CDUM, WORK(1), -1,
  431. $ CHILDINFO )
  432. LORGQRMIN = MAX( LORGQRMIN, M-P )
  433. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  434. END IF
  435. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  436. CALL CUNGLQ( Q, Q, R, V1T, LDV1T, CDUM, WORK(1), -1,
  437. $ CHILDINFO )
  438. LORGLQMIN = MAX( LORGLQMIN, Q )
  439. LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  440. END IF
  441. CALL CBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  442. $ DUM, V1T, LDV1T, CDUM, 1, U1, LDU1, U2, LDU2,
  443. $ DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  444. $ RWORK(1), -1, CHILDINFO )
  445. LBBCSD = INT( RWORK(1) )
  446. ELSE IF( R .EQ. M-P ) THEN
  447. CALL CUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  448. $ CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO )
  449. LORBDB = INT( WORK(1) )
  450. IF( WANTU1 .AND. P .GT. 0 ) THEN
  451. CALL CUNGQR( P, P, Q, U1, LDU1, CDUM, WORK(1), -1,
  452. $ CHILDINFO )
  453. LORGQRMIN = MAX( LORGQRMIN, P )
  454. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  455. END IF
  456. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  457. CALL CUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, CDUM,
  458. $ WORK(1), -1, CHILDINFO )
  459. LORGQRMIN = MAX( LORGQRMIN, M-P-1 )
  460. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  461. END IF
  462. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  463. CALL CUNGLQ( Q, Q, R, V1T, LDV1T, CDUM, WORK(1), -1,
  464. $ CHILDINFO )
  465. LORGLQMIN = MAX( LORGLQMIN, Q )
  466. LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  467. END IF
  468. CALL CBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  469. $ THETA, DUM, CDUM, 1, V1T, LDV1T, U2, LDU2, U1,
  470. $ LDU1, DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  471. $ RWORK(1), -1, CHILDINFO )
  472. LBBCSD = INT( RWORK(1) )
  473. ELSE
  474. CALL CUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, DUM,
  475. $ CDUM, CDUM, CDUM, CDUM, WORK(1), -1, CHILDINFO
  476. $ )
  477. LORBDB = M + INT( WORK(1) )
  478. IF( WANTU1 .AND. P .GT. 0 ) THEN
  479. CALL CUNGQR( P, P, M-Q, U1, LDU1, CDUM, WORK(1), -1,
  480. $ CHILDINFO )
  481. LORGQRMIN = MAX( LORGQRMIN, P )
  482. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  483. END IF
  484. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  485. CALL CUNGQR( M-P, M-P, M-Q, U2, LDU2, CDUM, WORK(1), -1,
  486. $ CHILDINFO )
  487. LORGQRMIN = MAX( LORGQRMIN, M-P )
  488. LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) )
  489. END IF
  490. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  491. CALL CUNGLQ( Q, Q, Q, V1T, LDV1T, CDUM, WORK(1), -1,
  492. $ CHILDINFO )
  493. LORGLQMIN = MAX( LORGLQMIN, Q )
  494. LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) )
  495. END IF
  496. CALL CBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  497. $ THETA, DUM, U2, LDU2, U1, LDU1, CDUM, 1, V1T,
  498. $ LDV1T, DUM, DUM, DUM, DUM, DUM, DUM, DUM, DUM,
  499. $ RWORK(1), -1, CHILDINFO )
  500. LBBCSD = INT( RWORK(1) )
  501. END IF
  502. LRWORKMIN = IBBCSD+LBBCSD-1
  503. LRWORKOPT = LRWORKMIN
  504. RWORK(1) = LRWORKOPT
  505. LWORKMIN = MAX( IORBDB+LORBDB-1,
  506. $ IORGQR+LORGQRMIN-1,
  507. $ IORGLQ+LORGLQMIN-1 )
  508. LWORKOPT = MAX( IORBDB+LORBDB-1,
  509. $ IORGQR+LORGQROPT-1,
  510. $ IORGLQ+LORGLQOPT-1 )
  511. WORK(1) = LWORKOPT
  512. IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  513. INFO = -19
  514. END IF
  515. IF( LRWORK .LT. LRWORKMIN .AND. .NOT.LQUERY ) THEN
  516. INFO = -21
  517. END IF
  518. END IF
  519. IF( INFO .NE. 0 ) THEN
  520. CALL XERBLA( 'CUNCSD2BY1', -INFO )
  521. RETURN
  522. ELSE IF( LQUERY ) THEN
  523. RETURN
  524. END IF
  525. LORGQR = LWORK-IORGQR+1
  526. LORGLQ = LWORK-IORGLQ+1
  527. *
  528. * Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
  529. * in which R = MIN(P,M-P,Q,M-Q)
  530. *
  531. IF( R .EQ. Q ) THEN
  532. *
  533. * Case 1: R = Q
  534. *
  535. * Simultaneously bidiagonalize X11 and X21
  536. *
  537. CALL CUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  538. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  539. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  540. *
  541. * Accumulate Householder reflectors
  542. *
  543. IF( WANTU1 .AND. P .GT. 0 ) THEN
  544. CALL CLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  545. CALL CUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  546. $ LORGQR, CHILDINFO )
  547. END IF
  548. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  549. CALL CLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  550. CALL CUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  551. $ WORK(IORGQR), LORGQR, CHILDINFO )
  552. END IF
  553. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  554. V1T(1,1) = ONE
  555. DO J = 2, Q
  556. V1T(1,J) = ZERO
  557. V1T(J,1) = ZERO
  558. END DO
  559. CALL CLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
  560. $ LDV1T )
  561. CALL CUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  562. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  563. END IF
  564. *
  565. * Simultaneously diagonalize X11 and X21.
  566. *
  567. CALL CBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  568. $ RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, CDUM,
  569. $ 1, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  570. $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  571. $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD),
  572. $ LRWORK-IBBCSD+1, CHILDINFO )
  573. *
  574. * Permute rows and columns to place zero submatrices in
  575. * preferred positions
  576. *
  577. IF( Q .GT. 0 .AND. WANTU2 ) THEN
  578. DO I = 1, Q
  579. IWORK(I) = M - P - Q + I
  580. END DO
  581. DO I = Q + 1, M - P
  582. IWORK(I) = I - Q
  583. END DO
  584. CALL CLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  585. END IF
  586. ELSE IF( R .EQ. P ) THEN
  587. *
  588. * Case 2: R = P
  589. *
  590. * Simultaneously bidiagonalize X11 and X21
  591. *
  592. CALL CUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  593. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  594. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  595. *
  596. * Accumulate Householder reflectors
  597. *
  598. IF( WANTU1 .AND. P .GT. 0 ) THEN
  599. U1(1,1) = ONE
  600. DO J = 2, P
  601. U1(1,J) = ZERO
  602. U1(J,1) = ZERO
  603. END DO
  604. CALL CLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
  605. CALL CUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
  606. $ WORK(IORGQR), LORGQR, CHILDINFO )
  607. END IF
  608. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  609. CALL CLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  610. CALL CUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  611. $ WORK(IORGQR), LORGQR, CHILDINFO )
  612. END IF
  613. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  614. CALL CLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
  615. CALL CUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  616. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  617. END IF
  618. *
  619. * Simultaneously diagonalize X11 and X21.
  620. *
  621. CALL CBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  622. $ RWORK(IPHI), V1T, LDV1T, CDUM, 1, U1, LDU1, U2,
  623. $ LDU2, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  624. $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  625. $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  626. $ CHILDINFO )
  627. *
  628. * Permute rows and columns to place identity submatrices in
  629. * preferred positions
  630. *
  631. IF( Q .GT. 0 .AND. WANTU2 ) THEN
  632. DO I = 1, Q
  633. IWORK(I) = M - P - Q + I
  634. END DO
  635. DO I = Q + 1, M - P
  636. IWORK(I) = I - Q
  637. END DO
  638. CALL CLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  639. END IF
  640. ELSE IF( R .EQ. M-P ) THEN
  641. *
  642. * Case 3: R = M-P
  643. *
  644. * Simultaneously bidiagonalize X11 and X21
  645. *
  646. CALL CUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  647. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  648. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  649. *
  650. * Accumulate Householder reflectors
  651. *
  652. IF( WANTU1 .AND. P .GT. 0 ) THEN
  653. CALL CLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  654. CALL CUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  655. $ LORGQR, CHILDINFO )
  656. END IF
  657. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  658. U2(1,1) = ONE
  659. DO J = 2, M-P
  660. U2(1,J) = ZERO
  661. U2(J,1) = ZERO
  662. END DO
  663. CALL CLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
  664. $ LDU2 )
  665. CALL CUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  666. $ WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
  667. END IF
  668. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  669. CALL CLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
  670. CALL CUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  671. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  672. END IF
  673. *
  674. * Simultaneously diagonalize X11 and X21.
  675. *
  676. CALL CBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  677. $ THETA, RWORK(IPHI), CDUM, 1, V1T, LDV1T, U2, LDU2,
  678. $ U1, LDU1, RWORK(IB11D), RWORK(IB11E),
  679. $ RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
  680. $ RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
  681. $ RWORK(IBBCSD), LBBCSD, CHILDINFO )
  682. *
  683. * Permute rows and columns to place identity submatrices in
  684. * preferred positions
  685. *
  686. IF( Q .GT. R ) THEN
  687. DO I = 1, R
  688. IWORK(I) = Q - R + I
  689. END DO
  690. DO I = R + 1, Q
  691. IWORK(I) = I - R
  692. END DO
  693. IF( WANTU1 ) THEN
  694. CALL CLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
  695. END IF
  696. IF( WANTV1T ) THEN
  697. CALL CLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
  698. END IF
  699. END IF
  700. ELSE
  701. *
  702. * Case 4: R = M-Q
  703. *
  704. * Simultaneously bidiagonalize X11 and X21
  705. *
  706. CALL CUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  707. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  708. $ WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
  709. $ LORBDB-M, CHILDINFO )
  710. *
  711. * Accumulate Householder reflectors
  712. *
  713. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  714. CALL CCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
  715. END IF
  716. IF( WANTU1 .AND. P .GT. 0 ) THEN
  717. CALL CCOPY( P, WORK(IORBDB), 1, U1, 1 )
  718. DO J = 2, P
  719. U1(1,J) = ZERO
  720. END DO
  721. CALL CLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
  722. $ LDU1 )
  723. CALL CUNGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
  724. $ WORK(IORGQR), LORGQR, CHILDINFO )
  725. END IF
  726. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  727. DO J = 2, M-P
  728. U2(1,J) = ZERO
  729. END DO
  730. CALL CLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
  731. $ LDU2 )
  732. CALL CUNGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
  733. $ WORK(IORGQR), LORGQR, CHILDINFO )
  734. END IF
  735. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  736. CALL CLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
  737. CALL CLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
  738. $ V1T(M-Q+1,M-Q+1), LDV1T )
  739. CALL CLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
  740. $ V1T(P+1,P+1), LDV1T )
  741. CALL CUNGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
  742. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  743. END IF
  744. *
  745. * Simultaneously diagonalize X11 and X21.
  746. *
  747. CALL CBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  748. $ THETA, RWORK(IPHI), U2, LDU2, U1, LDU1, CDUM, 1,
  749. $ V1T, LDV1T, RWORK(IB11D), RWORK(IB11E),
  750. $ RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
  751. $ RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
  752. $ RWORK(IBBCSD), LBBCSD, CHILDINFO )
  753. *
  754. * Permute rows and columns to place identity submatrices in
  755. * preferred positions
  756. *
  757. IF( P .GT. R ) THEN
  758. DO I = 1, R
  759. IWORK(I) = P - R + I
  760. END DO
  761. DO I = R + 1, P
  762. IWORK(I) = I - R
  763. END DO
  764. IF( WANTU1 ) THEN
  765. CALL CLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
  766. END IF
  767. IF( WANTV1T ) THEN
  768. CALL CLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
  769. END IF
  770. END IF
  771. END IF
  772. *
  773. RETURN
  774. *
  775. * End of CUNCSD2BY1
  776. *
  777. END