You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctfttr.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535
  1. *> \brief \b CTFTTR copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CTFTTR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctfttr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctfttr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctfttr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CTFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER TRANSR, UPLO
  25. * INTEGER INFO, N, LDA
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX A( 0: LDA-1, 0: * ), ARF( 0: * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CTFTTR copies a triangular matrix A from rectangular full packed
  38. *> format (TF) to standard full format (TR).
  39. *> \endverbatim
  40. *
  41. * Arguments:
  42. * ==========
  43. *
  44. *> \param[in] TRANSR
  45. *> \verbatim
  46. *> TRANSR is CHARACTER*1
  47. *> = 'N': ARF is in Normal format;
  48. *> = 'C': ARF is in Conjugate-transpose format;
  49. *> \endverbatim
  50. *>
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': A is upper triangular;
  55. *> = 'L': A is lower triangular.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] ARF
  65. *> \verbatim
  66. *> ARF is COMPLEX array, dimension ( N*(N+1)/2 ),
  67. *> On entry, the upper or lower triangular matrix A stored in
  68. *> RFP format. For a further discussion see Notes below.
  69. *> \endverbatim
  70. *>
  71. *> \param[out] A
  72. *> \verbatim
  73. *> A is COMPLEX array, dimension ( LDA, N )
  74. *> On exit, the triangular matrix A. If UPLO = 'U', the
  75. *> leading N-by-N upper triangular part of the array A contains
  76. *> the upper triangular matrix, and the strictly lower
  77. *> triangular part of A is not referenced. If UPLO = 'L', the
  78. *> leading N-by-N lower triangular part of the array A contains
  79. *> the lower triangular matrix, and the strictly upper
  80. *> triangular part of A is not referenced.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDA
  84. *> \verbatim
  85. *> LDA is INTEGER
  86. *> The leading dimension of the array A. LDA >= max(1,N).
  87. *> \endverbatim
  88. *>
  89. *> \param[out] INFO
  90. *> \verbatim
  91. *> INFO is INTEGER
  92. *> = 0: successful exit
  93. *> < 0: if INFO = -i, the i-th argument had an illegal value
  94. *> \endverbatim
  95. *
  96. * Authors:
  97. * ========
  98. *
  99. *> \author Univ. of Tennessee
  100. *> \author Univ. of California Berkeley
  101. *> \author Univ. of Colorado Denver
  102. *> \author NAG Ltd.
  103. *
  104. *> \ingroup complexOTHERcomputational
  105. *
  106. *> \par Further Details:
  107. * =====================
  108. *>
  109. *> \verbatim
  110. *>
  111. *> We first consider Standard Packed Format when N is even.
  112. *> We give an example where N = 6.
  113. *>
  114. *> AP is Upper AP is Lower
  115. *>
  116. *> 00 01 02 03 04 05 00
  117. *> 11 12 13 14 15 10 11
  118. *> 22 23 24 25 20 21 22
  119. *> 33 34 35 30 31 32 33
  120. *> 44 45 40 41 42 43 44
  121. *> 55 50 51 52 53 54 55
  122. *>
  123. *>
  124. *> Let TRANSR = 'N'. RFP holds AP as follows:
  125. *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  126. *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  127. *> conjugate-transpose of the first three columns of AP upper.
  128. *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  129. *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  130. *> conjugate-transpose of the last three columns of AP lower.
  131. *> To denote conjugate we place -- above the element. This covers the
  132. *> case N even and TRANSR = 'N'.
  133. *>
  134. *> RFP A RFP A
  135. *>
  136. *> -- -- --
  137. *> 03 04 05 33 43 53
  138. *> -- --
  139. *> 13 14 15 00 44 54
  140. *> --
  141. *> 23 24 25 10 11 55
  142. *>
  143. *> 33 34 35 20 21 22
  144. *> --
  145. *> 00 44 45 30 31 32
  146. *> -- --
  147. *> 01 11 55 40 41 42
  148. *> -- -- --
  149. *> 02 12 22 50 51 52
  150. *>
  151. *> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  152. *> transpose of RFP A above. One therefore gets:
  153. *>
  154. *>
  155. *> RFP A RFP A
  156. *>
  157. *> -- -- -- -- -- -- -- -- -- --
  158. *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
  159. *> -- -- -- -- -- -- -- -- -- --
  160. *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
  161. *> -- -- -- -- -- -- -- -- -- --
  162. *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
  163. *>
  164. *>
  165. *> We next consider Standard Packed Format when N is odd.
  166. *> We give an example where N = 5.
  167. *>
  168. *> AP is Upper AP is Lower
  169. *>
  170. *> 00 01 02 03 04 00
  171. *> 11 12 13 14 10 11
  172. *> 22 23 24 20 21 22
  173. *> 33 34 30 31 32 33
  174. *> 44 40 41 42 43 44
  175. *>
  176. *>
  177. *> Let TRANSR = 'N'. RFP holds AP as follows:
  178. *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  179. *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  180. *> conjugate-transpose of the first two columns of AP upper.
  181. *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  182. *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  183. *> conjugate-transpose of the last two columns of AP lower.
  184. *> To denote conjugate we place -- above the element. This covers the
  185. *> case N odd and TRANSR = 'N'.
  186. *>
  187. *> RFP A RFP A
  188. *>
  189. *> -- --
  190. *> 02 03 04 00 33 43
  191. *> --
  192. *> 12 13 14 10 11 44
  193. *>
  194. *> 22 23 24 20 21 22
  195. *> --
  196. *> 00 33 34 30 31 32
  197. *> -- --
  198. *> 01 11 44 40 41 42
  199. *>
  200. *> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  201. *> transpose of RFP A above. One therefore gets:
  202. *>
  203. *>
  204. *> RFP A RFP A
  205. *>
  206. *> -- -- -- -- -- -- -- -- --
  207. *> 02 12 22 00 01 00 10 20 30 40 50
  208. *> -- -- -- -- -- -- -- -- --
  209. *> 03 13 23 33 11 33 11 21 31 41 51
  210. *> -- -- -- -- -- -- -- -- --
  211. *> 04 14 24 34 44 43 44 22 32 42 52
  212. *> \endverbatim
  213. *>
  214. * =====================================================================
  215. SUBROUTINE CTFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
  216. *
  217. * -- LAPACK computational routine --
  218. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  219. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  220. *
  221. * .. Scalar Arguments ..
  222. CHARACTER TRANSR, UPLO
  223. INTEGER INFO, N, LDA
  224. * ..
  225. * .. Array Arguments ..
  226. COMPLEX A( 0: LDA-1, 0: * ), ARF( 0: * )
  227. * ..
  228. *
  229. * =====================================================================
  230. *
  231. * .. Parameters ..
  232. * ..
  233. * .. Local Scalars ..
  234. LOGICAL LOWER, NISODD, NORMALTRANSR
  235. INTEGER N1, N2, K, NT, NX2, NP1X2
  236. INTEGER I, J, L, IJ
  237. * ..
  238. * .. External Functions ..
  239. LOGICAL LSAME
  240. EXTERNAL LSAME
  241. * ..
  242. * .. External Subroutines ..
  243. EXTERNAL XERBLA
  244. * ..
  245. * .. Intrinsic Functions ..
  246. INTRINSIC CONJG, MAX, MOD
  247. * ..
  248. * .. Executable Statements ..
  249. *
  250. * Test the input parameters.
  251. *
  252. INFO = 0
  253. NORMALTRANSR = LSAME( TRANSR, 'N' )
  254. LOWER = LSAME( UPLO, 'L' )
  255. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  256. INFO = -1
  257. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  258. INFO = -2
  259. ELSE IF( N.LT.0 ) THEN
  260. INFO = -3
  261. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  262. INFO = -6
  263. END IF
  264. IF( INFO.NE.0 ) THEN
  265. CALL XERBLA( 'CTFTTR', -INFO )
  266. RETURN
  267. END IF
  268. *
  269. * Quick return if possible
  270. *
  271. IF( N.LE.1 ) THEN
  272. IF( N.EQ.1 ) THEN
  273. IF( NORMALTRANSR ) THEN
  274. A( 0, 0 ) = ARF( 0 )
  275. ELSE
  276. A( 0, 0 ) = CONJG( ARF( 0 ) )
  277. END IF
  278. END IF
  279. RETURN
  280. END IF
  281. *
  282. * Size of array ARF(1:2,0:nt-1)
  283. *
  284. NT = N*( N+1 ) / 2
  285. *
  286. * set N1 and N2 depending on LOWER: for N even N1=N2=K
  287. *
  288. IF( LOWER ) THEN
  289. N2 = N / 2
  290. N1 = N - N2
  291. ELSE
  292. N1 = N / 2
  293. N2 = N - N1
  294. END IF
  295. *
  296. * If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2.
  297. * If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is
  298. * N--by--(N+1)/2.
  299. *
  300. IF( MOD( N, 2 ).EQ.0 ) THEN
  301. K = N / 2
  302. NISODD = .FALSE.
  303. IF( .NOT.LOWER )
  304. $ NP1X2 = N + N + 2
  305. ELSE
  306. NISODD = .TRUE.
  307. IF( .NOT.LOWER )
  308. $ NX2 = N + N
  309. END IF
  310. *
  311. IF( NISODD ) THEN
  312. *
  313. * N is odd
  314. *
  315. IF( NORMALTRANSR ) THEN
  316. *
  317. * N is odd and TRANSR = 'N'
  318. *
  319. IF( LOWER ) THEN
  320. *
  321. * SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  322. * T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  323. * T1 -> a(0), T2 -> a(n), S -> a(n1); lda=n
  324. *
  325. IJ = 0
  326. DO J = 0, N2
  327. DO I = N1, N2 + J
  328. A( N2+J, I ) = CONJG( ARF( IJ ) )
  329. IJ = IJ + 1
  330. END DO
  331. DO I = J, N - 1
  332. A( I, J ) = ARF( IJ )
  333. IJ = IJ + 1
  334. END DO
  335. END DO
  336. *
  337. ELSE
  338. *
  339. * SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  340. * T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  341. * T1 -> a(n2), T2 -> a(n1), S -> a(0); lda=n
  342. *
  343. IJ = NT - N
  344. DO J = N - 1, N1, -1
  345. DO I = 0, J
  346. A( I, J ) = ARF( IJ )
  347. IJ = IJ + 1
  348. END DO
  349. DO L = J - N1, N1 - 1
  350. A( J-N1, L ) = CONJG( ARF( IJ ) )
  351. IJ = IJ + 1
  352. END DO
  353. IJ = IJ - NX2
  354. END DO
  355. *
  356. END IF
  357. *
  358. ELSE
  359. *
  360. * N is odd and TRANSR = 'C'
  361. *
  362. IF( LOWER ) THEN
  363. *
  364. * SRPA for LOWER, TRANSPOSE and N is odd
  365. * T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
  366. * T1 -> A(0+0) , T2 -> A(1+0) , S -> A(0+n1*n1); lda=n1
  367. *
  368. IJ = 0
  369. DO J = 0, N2 - 1
  370. DO I = 0, J
  371. A( J, I ) = CONJG( ARF( IJ ) )
  372. IJ = IJ + 1
  373. END DO
  374. DO I = N1 + J, N - 1
  375. A( I, N1+J ) = ARF( IJ )
  376. IJ = IJ + 1
  377. END DO
  378. END DO
  379. DO J = N2, N - 1
  380. DO I = 0, N1 - 1
  381. A( J, I ) = CONJG( ARF( IJ ) )
  382. IJ = IJ + 1
  383. END DO
  384. END DO
  385. *
  386. ELSE
  387. *
  388. * SRPA for UPPER, TRANSPOSE and N is odd
  389. * T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
  390. * T1 -> A(n2*n2), T2 -> A(n1*n2), S -> A(0); lda = n2
  391. *
  392. IJ = 0
  393. DO J = 0, N1
  394. DO I = N1, N - 1
  395. A( J, I ) = CONJG( ARF( IJ ) )
  396. IJ = IJ + 1
  397. END DO
  398. END DO
  399. DO J = 0, N1 - 1
  400. DO I = 0, J
  401. A( I, J ) = ARF( IJ )
  402. IJ = IJ + 1
  403. END DO
  404. DO L = N2 + J, N - 1
  405. A( N2+J, L ) = CONJG( ARF( IJ ) )
  406. IJ = IJ + 1
  407. END DO
  408. END DO
  409. *
  410. END IF
  411. *
  412. END IF
  413. *
  414. ELSE
  415. *
  416. * N is even
  417. *
  418. IF( NORMALTRANSR ) THEN
  419. *
  420. * N is even and TRANSR = 'N'
  421. *
  422. IF( LOWER ) THEN
  423. *
  424. * SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  425. * T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  426. * T1 -> a(1), T2 -> a(0), S -> a(k+1); lda=n+1
  427. *
  428. IJ = 0
  429. DO J = 0, K - 1
  430. DO I = K, K + J
  431. A( K+J, I ) = CONJG( ARF( IJ ) )
  432. IJ = IJ + 1
  433. END DO
  434. DO I = J, N - 1
  435. A( I, J ) = ARF( IJ )
  436. IJ = IJ + 1
  437. END DO
  438. END DO
  439. *
  440. ELSE
  441. *
  442. * SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  443. * T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
  444. * T1 -> a(k+1), T2 -> a(k), S -> a(0); lda=n+1
  445. *
  446. IJ = NT - N - 1
  447. DO J = N - 1, K, -1
  448. DO I = 0, J
  449. A( I, J ) = ARF( IJ )
  450. IJ = IJ + 1
  451. END DO
  452. DO L = J - K, K - 1
  453. A( J-K, L ) = CONJG( ARF( IJ ) )
  454. IJ = IJ + 1
  455. END DO
  456. IJ = IJ - NP1X2
  457. END DO
  458. *
  459. END IF
  460. *
  461. ELSE
  462. *
  463. * N is even and TRANSR = 'C'
  464. *
  465. IF( LOWER ) THEN
  466. *
  467. * SRPA for LOWER, TRANSPOSE and N is even (see paper, A=B)
  468. * T1 -> A(0,1) , T2 -> A(0,0) , S -> A(0,k+1) :
  469. * T1 -> A(0+k) , T2 -> A(0+0) , S -> A(0+k*(k+1)); lda=k
  470. *
  471. IJ = 0
  472. J = K
  473. DO I = K, N - 1
  474. A( I, J ) = ARF( IJ )
  475. IJ = IJ + 1
  476. END DO
  477. DO J = 0, K - 2
  478. DO I = 0, J
  479. A( J, I ) = CONJG( ARF( IJ ) )
  480. IJ = IJ + 1
  481. END DO
  482. DO I = K + 1 + J, N - 1
  483. A( I, K+1+J ) = ARF( IJ )
  484. IJ = IJ + 1
  485. END DO
  486. END DO
  487. DO J = K - 1, N - 1
  488. DO I = 0, K - 1
  489. A( J, I ) = CONJG( ARF( IJ ) )
  490. IJ = IJ + 1
  491. END DO
  492. END DO
  493. *
  494. ELSE
  495. *
  496. * SRPA for UPPER, TRANSPOSE and N is even (see paper, A=B)
  497. * T1 -> A(0,k+1) , T2 -> A(0,k) , S -> A(0,0)
  498. * T1 -> A(0+k*(k+1)) , T2 -> A(0+k*k) , S -> A(0+0)); lda=k
  499. *
  500. IJ = 0
  501. DO J = 0, K
  502. DO I = K, N - 1
  503. A( J, I ) = CONJG( ARF( IJ ) )
  504. IJ = IJ + 1
  505. END DO
  506. END DO
  507. DO J = 0, K - 2
  508. DO I = 0, J
  509. A( I, J ) = ARF( IJ )
  510. IJ = IJ + 1
  511. END DO
  512. DO L = K + 1 + J, N - 1
  513. A( K+1+J, L ) = CONJG( ARF( IJ ) )
  514. IJ = IJ + 1
  515. END DO
  516. END DO
  517. *
  518. * Note that here J = K-1
  519. *
  520. DO I = 0, J
  521. A( I, J ) = ARF( IJ )
  522. IJ = IJ + 1
  523. END DO
  524. *
  525. END IF
  526. *
  527. END IF
  528. *
  529. END IF
  530. *
  531. RETURN
  532. *
  533. * End of CTFTTR
  534. *
  535. END