You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cpbstf.f 9.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329
  1. *> \brief \b CPBSTF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CPBSTF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpbstf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpbstf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpbstf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CPBSTF( UPLO, N, KD, AB, LDAB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, KD, LDAB, N
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX AB( LDAB, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CPBSTF computes a split Cholesky factorization of a complex
  38. *> Hermitian positive definite band matrix A.
  39. *>
  40. *> This routine is designed to be used in conjunction with CHBGST.
  41. *>
  42. *> The factorization has the form A = S**H*S where S is a band matrix
  43. *> of the same bandwidth as A and the following structure:
  44. *>
  45. *> S = ( U )
  46. *> ( M L )
  47. *>
  48. *> where U is upper triangular of order m = (n+kd)/2, and L is lower
  49. *> triangular of order n-m.
  50. *> \endverbatim
  51. *
  52. * Arguments:
  53. * ==========
  54. *
  55. *> \param[in] UPLO
  56. *> \verbatim
  57. *> UPLO is CHARACTER*1
  58. *> = 'U': Upper triangle of A is stored;
  59. *> = 'L': Lower triangle of A is stored.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The order of the matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] KD
  69. *> \verbatim
  70. *> KD is INTEGER
  71. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  72. *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
  73. *> \endverbatim
  74. *>
  75. *> \param[in,out] AB
  76. *> \verbatim
  77. *> AB is COMPLEX array, dimension (LDAB,N)
  78. *> On entry, the upper or lower triangle of the Hermitian band
  79. *> matrix A, stored in the first kd+1 rows of the array. The
  80. *> j-th column of A is stored in the j-th column of the array AB
  81. *> as follows:
  82. *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  83. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
  84. *>
  85. *> On exit, if INFO = 0, the factor S from the split Cholesky
  86. *> factorization A = S**H*S. See Further Details.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDAB
  90. *> \verbatim
  91. *> LDAB is INTEGER
  92. *> The leading dimension of the array AB. LDAB >= KD+1.
  93. *> \endverbatim
  94. *>
  95. *> \param[out] INFO
  96. *> \verbatim
  97. *> INFO is INTEGER
  98. *> = 0: successful exit
  99. *> < 0: if INFO = -i, the i-th argument had an illegal value
  100. *> > 0: if INFO = i, the factorization could not be completed,
  101. *> because the updated element a(i,i) was negative; the
  102. *> matrix A is not positive definite.
  103. *> \endverbatim
  104. *
  105. * Authors:
  106. * ========
  107. *
  108. *> \author Univ. of Tennessee
  109. *> \author Univ. of California Berkeley
  110. *> \author Univ. of Colorado Denver
  111. *> \author NAG Ltd.
  112. *
  113. *> \ingroup complexOTHERcomputational
  114. *
  115. *> \par Further Details:
  116. * =====================
  117. *>
  118. *> \verbatim
  119. *>
  120. *> The band storage scheme is illustrated by the following example, when
  121. *> N = 7, KD = 2:
  122. *>
  123. *> S = ( s11 s12 s13 )
  124. *> ( s22 s23 s24 )
  125. *> ( s33 s34 )
  126. *> ( s44 )
  127. *> ( s53 s54 s55 )
  128. *> ( s64 s65 s66 )
  129. *> ( s75 s76 s77 )
  130. *>
  131. *> If UPLO = 'U', the array AB holds:
  132. *>
  133. *> on entry: on exit:
  134. *>
  135. *> * * a13 a24 a35 a46 a57 * * s13 s24 s53**H s64**H s75**H
  136. *> * a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54**H s65**H s76**H
  137. *> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
  138. *>
  139. *> If UPLO = 'L', the array AB holds:
  140. *>
  141. *> on entry: on exit:
  142. *>
  143. *> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
  144. *> a21 a32 a43 a54 a65 a76 * s12**H s23**H s34**H s54 s65 s76 *
  145. *> a31 a42 a53 a64 a64 * * s13**H s24**H s53 s64 s75 * *
  146. *>
  147. *> Array elements marked * are not used by the routine; s12**H denotes
  148. *> conjg(s12); the diagonal elements of S are real.
  149. *> \endverbatim
  150. *>
  151. * =====================================================================
  152. SUBROUTINE CPBSTF( UPLO, N, KD, AB, LDAB, INFO )
  153. *
  154. * -- LAPACK computational routine --
  155. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  156. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  157. *
  158. * .. Scalar Arguments ..
  159. CHARACTER UPLO
  160. INTEGER INFO, KD, LDAB, N
  161. * ..
  162. * .. Array Arguments ..
  163. COMPLEX AB( LDAB, * )
  164. * ..
  165. *
  166. * =====================================================================
  167. *
  168. * .. Parameters ..
  169. REAL ONE, ZERO
  170. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  171. * ..
  172. * .. Local Scalars ..
  173. LOGICAL UPPER
  174. INTEGER J, KLD, KM, M
  175. REAL AJJ
  176. * ..
  177. * .. External Functions ..
  178. LOGICAL LSAME
  179. EXTERNAL LSAME
  180. * ..
  181. * .. External Subroutines ..
  182. EXTERNAL CHER, CLACGV, CSSCAL, XERBLA
  183. * ..
  184. * .. Intrinsic Functions ..
  185. INTRINSIC MAX, MIN, REAL, SQRT
  186. * ..
  187. * .. Executable Statements ..
  188. *
  189. * Test the input parameters.
  190. *
  191. INFO = 0
  192. UPPER = LSAME( UPLO, 'U' )
  193. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  194. INFO = -1
  195. ELSE IF( N.LT.0 ) THEN
  196. INFO = -2
  197. ELSE IF( KD.LT.0 ) THEN
  198. INFO = -3
  199. ELSE IF( LDAB.LT.KD+1 ) THEN
  200. INFO = -5
  201. END IF
  202. IF( INFO.NE.0 ) THEN
  203. CALL XERBLA( 'CPBSTF', -INFO )
  204. RETURN
  205. END IF
  206. *
  207. * Quick return if possible
  208. *
  209. IF( N.EQ.0 )
  210. $ RETURN
  211. *
  212. KLD = MAX( 1, LDAB-1 )
  213. *
  214. * Set the splitting point m.
  215. *
  216. M = ( N+KD ) / 2
  217. *
  218. IF( UPPER ) THEN
  219. *
  220. * Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
  221. *
  222. DO 10 J = N, M + 1, -1
  223. *
  224. * Compute s(j,j) and test for non-positive-definiteness.
  225. *
  226. AJJ = REAL( AB( KD+1, J ) )
  227. IF( AJJ.LE.ZERO ) THEN
  228. AB( KD+1, J ) = AJJ
  229. GO TO 50
  230. END IF
  231. AJJ = SQRT( AJJ )
  232. AB( KD+1, J ) = AJJ
  233. KM = MIN( J-1, KD )
  234. *
  235. * Compute elements j-km:j-1 of the j-th column and update the
  236. * the leading submatrix within the band.
  237. *
  238. CALL CSSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 )
  239. CALL CHER( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1,
  240. $ AB( KD+1, J-KM ), KLD )
  241. 10 CONTINUE
  242. *
  243. * Factorize the updated submatrix A(1:m,1:m) as U**H*U.
  244. *
  245. DO 20 J = 1, M
  246. *
  247. * Compute s(j,j) and test for non-positive-definiteness.
  248. *
  249. AJJ = REAL( AB( KD+1, J ) )
  250. IF( AJJ.LE.ZERO ) THEN
  251. AB( KD+1, J ) = AJJ
  252. GO TO 50
  253. END IF
  254. AJJ = SQRT( AJJ )
  255. AB( KD+1, J ) = AJJ
  256. KM = MIN( KD, M-J )
  257. *
  258. * Compute elements j+1:j+km of the j-th row and update the
  259. * trailing submatrix within the band.
  260. *
  261. IF( KM.GT.0 ) THEN
  262. CALL CSSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD )
  263. CALL CLACGV( KM, AB( KD, J+1 ), KLD )
  264. CALL CHER( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD,
  265. $ AB( KD+1, J+1 ), KLD )
  266. CALL CLACGV( KM, AB( KD, J+1 ), KLD )
  267. END IF
  268. 20 CONTINUE
  269. ELSE
  270. *
  271. * Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
  272. *
  273. DO 30 J = N, M + 1, -1
  274. *
  275. * Compute s(j,j) and test for non-positive-definiteness.
  276. *
  277. AJJ = REAL( AB( 1, J ) )
  278. IF( AJJ.LE.ZERO ) THEN
  279. AB( 1, J ) = AJJ
  280. GO TO 50
  281. END IF
  282. AJJ = SQRT( AJJ )
  283. AB( 1, J ) = AJJ
  284. KM = MIN( J-1, KD )
  285. *
  286. * Compute elements j-km:j-1 of the j-th row and update the
  287. * trailing submatrix within the band.
  288. *
  289. CALL CSSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD )
  290. CALL CLACGV( KM, AB( KM+1, J-KM ), KLD )
  291. CALL CHER( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD,
  292. $ AB( 1, J-KM ), KLD )
  293. CALL CLACGV( KM, AB( KM+1, J-KM ), KLD )
  294. 30 CONTINUE
  295. *
  296. * Factorize the updated submatrix A(1:m,1:m) as U**H*U.
  297. *
  298. DO 40 J = 1, M
  299. *
  300. * Compute s(j,j) and test for non-positive-definiteness.
  301. *
  302. AJJ = REAL( AB( 1, J ) )
  303. IF( AJJ.LE.ZERO ) THEN
  304. AB( 1, J ) = AJJ
  305. GO TO 50
  306. END IF
  307. AJJ = SQRT( AJJ )
  308. AB( 1, J ) = AJJ
  309. KM = MIN( KD, M-J )
  310. *
  311. * Compute elements j+1:j+km of the j-th column and update the
  312. * trailing submatrix within the band.
  313. *
  314. IF( KM.GT.0 ) THEN
  315. CALL CSSCAL( KM, ONE / AJJ, AB( 2, J ), 1 )
  316. CALL CHER( 'Lower', KM, -ONE, AB( 2, J ), 1,
  317. $ AB( 1, J+1 ), KLD )
  318. END IF
  319. 40 CONTINUE
  320. END IF
  321. RETURN
  322. *
  323. 50 CONTINUE
  324. INFO = J
  325. RETURN
  326. *
  327. * End of CPBSTF
  328. *
  329. END