You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clatrs.f 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963
  1. *> \brief \b CLATRS solves a triangular system of equations with the scale factor set to prevent overflow.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLATRS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clatrs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clatrs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clatrs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
  22. * CNORM, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORMIN, TRANS, UPLO
  26. * INTEGER INFO, LDA, N
  27. * REAL SCALE
  28. * ..
  29. * .. Array Arguments ..
  30. * REAL CNORM( * )
  31. * COMPLEX A( LDA, * ), X( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> CLATRS solves one of the triangular systems
  41. *>
  42. *> A * x = s*b, A**T * x = s*b, or A**H * x = s*b,
  43. *>
  44. *> with scaling to prevent overflow. Here A is an upper or lower
  45. *> triangular matrix, A**T denotes the transpose of A, A**H denotes the
  46. *> conjugate transpose of A, x and b are n-element vectors, and s is a
  47. *> scaling factor, usually less than or equal to 1, chosen so that the
  48. *> components of x will be less than the overflow threshold. If the
  49. *> unscaled problem will not cause overflow, the Level 2 BLAS routine
  50. *> CTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
  51. *> then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] UPLO
  58. *> \verbatim
  59. *> UPLO is CHARACTER*1
  60. *> Specifies whether the matrix A is upper or lower triangular.
  61. *> = 'U': Upper triangular
  62. *> = 'L': Lower triangular
  63. *> \endverbatim
  64. *>
  65. *> \param[in] TRANS
  66. *> \verbatim
  67. *> TRANS is CHARACTER*1
  68. *> Specifies the operation applied to A.
  69. *> = 'N': Solve A * x = s*b (No transpose)
  70. *> = 'T': Solve A**T * x = s*b (Transpose)
  71. *> = 'C': Solve A**H * x = s*b (Conjugate transpose)
  72. *> \endverbatim
  73. *>
  74. *> \param[in] DIAG
  75. *> \verbatim
  76. *> DIAG is CHARACTER*1
  77. *> Specifies whether or not the matrix A is unit triangular.
  78. *> = 'N': Non-unit triangular
  79. *> = 'U': Unit triangular
  80. *> \endverbatim
  81. *>
  82. *> \param[in] NORMIN
  83. *> \verbatim
  84. *> NORMIN is CHARACTER*1
  85. *> Specifies whether CNORM has been set or not.
  86. *> = 'Y': CNORM contains the column norms on entry
  87. *> = 'N': CNORM is not set on entry. On exit, the norms will
  88. *> be computed and stored in CNORM.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] N
  92. *> \verbatim
  93. *> N is INTEGER
  94. *> The order of the matrix A. N >= 0.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] A
  98. *> \verbatim
  99. *> A is COMPLEX array, dimension (LDA,N)
  100. *> The triangular matrix A. If UPLO = 'U', the leading n by n
  101. *> upper triangular part of the array A contains the upper
  102. *> triangular matrix, and the strictly lower triangular part of
  103. *> A is not referenced. If UPLO = 'L', the leading n by n lower
  104. *> triangular part of the array A contains the lower triangular
  105. *> matrix, and the strictly upper triangular part of A is not
  106. *> referenced. If DIAG = 'U', the diagonal elements of A are
  107. *> also not referenced and are assumed to be 1.
  108. *> \endverbatim
  109. *>
  110. *> \param[in] LDA
  111. *> \verbatim
  112. *> LDA is INTEGER
  113. *> The leading dimension of the array A. LDA >= max (1,N).
  114. *> \endverbatim
  115. *>
  116. *> \param[in,out] X
  117. *> \verbatim
  118. *> X is COMPLEX array, dimension (N)
  119. *> On entry, the right hand side b of the triangular system.
  120. *> On exit, X is overwritten by the solution vector x.
  121. *> \endverbatim
  122. *>
  123. *> \param[out] SCALE
  124. *> \verbatim
  125. *> SCALE is REAL
  126. *> The scaling factor s for the triangular system
  127. *> A * x = s*b, A**T * x = s*b, or A**H * x = s*b.
  128. *> If SCALE = 0, the matrix A is singular or badly scaled, and
  129. *> the vector x is an exact or approximate solution to A*x = 0.
  130. *> \endverbatim
  131. *>
  132. *> \param[in,out] CNORM
  133. *> \verbatim
  134. *> CNORM is REAL array, dimension (N)
  135. *>
  136. *> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  137. *> contains the norm of the off-diagonal part of the j-th column
  138. *> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
  139. *> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  140. *> must be greater than or equal to the 1-norm.
  141. *>
  142. *> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  143. *> returns the 1-norm of the offdiagonal part of the j-th column
  144. *> of A.
  145. *> \endverbatim
  146. *>
  147. *> \param[out] INFO
  148. *> \verbatim
  149. *> INFO is INTEGER
  150. *> = 0: successful exit
  151. *> < 0: if INFO = -k, the k-th argument had an illegal value
  152. *> \endverbatim
  153. *
  154. * Authors:
  155. * ========
  156. *
  157. *> \author Univ. of Tennessee
  158. *> \author Univ. of California Berkeley
  159. *> \author Univ. of Colorado Denver
  160. *> \author NAG Ltd.
  161. *
  162. *> \ingroup complexOTHERauxiliary
  163. *
  164. *> \par Further Details:
  165. * =====================
  166. *>
  167. *> \verbatim
  168. *>
  169. *> A rough bound on x is computed; if that is less than overflow, CTRSV
  170. *> is called, otherwise, specific code is used which checks for possible
  171. *> overflow or divide-by-zero at every operation.
  172. *>
  173. *> A columnwise scheme is used for solving A*x = b. The basic algorithm
  174. *> if A is lower triangular is
  175. *>
  176. *> x[1:n] := b[1:n]
  177. *> for j = 1, ..., n
  178. *> x(j) := x(j) / A(j,j)
  179. *> x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  180. *> end
  181. *>
  182. *> Define bounds on the components of x after j iterations of the loop:
  183. *> M(j) = bound on x[1:j]
  184. *> G(j) = bound on x[j+1:n]
  185. *> Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  186. *>
  187. *> Then for iteration j+1 we have
  188. *> M(j+1) <= G(j) / | A(j+1,j+1) |
  189. *> G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  190. *> <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  191. *>
  192. *> where CNORM(j+1) is greater than or equal to the infinity-norm of
  193. *> column j+1 of A, not counting the diagonal. Hence
  194. *>
  195. *> G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  196. *> 1<=i<=j
  197. *> and
  198. *>
  199. *> |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  200. *> 1<=i< j
  201. *>
  202. *> Since |x(j)| <= M(j), we use the Level 2 BLAS routine CTRSV if the
  203. *> reciprocal of the largest M(j), j=1,..,n, is larger than
  204. *> max(underflow, 1/overflow).
  205. *>
  206. *> The bound on x(j) is also used to determine when a step in the
  207. *> columnwise method can be performed without fear of overflow. If
  208. *> the computed bound is greater than a large constant, x is scaled to
  209. *> prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  210. *> 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  211. *>
  212. *> Similarly, a row-wise scheme is used to solve A**T *x = b or
  213. *> A**H *x = b. The basic algorithm for A upper triangular is
  214. *>
  215. *> for j = 1, ..., n
  216. *> x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
  217. *> end
  218. *>
  219. *> We simultaneously compute two bounds
  220. *> G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
  221. *> M(j) = bound on x(i), 1<=i<=j
  222. *>
  223. *> The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  224. *> add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  225. *> Then the bound on x(j) is
  226. *>
  227. *> M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  228. *>
  229. *> <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  230. *> 1<=i<=j
  231. *>
  232. *> and we can safely call CTRSV if 1/M(n) and 1/G(n) are both greater
  233. *> than max(underflow, 1/overflow).
  234. *> \endverbatim
  235. *>
  236. * =====================================================================
  237. SUBROUTINE CLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
  238. $ CNORM, INFO )
  239. *
  240. * -- LAPACK auxiliary routine --
  241. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  242. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  243. *
  244. * .. Scalar Arguments ..
  245. CHARACTER DIAG, NORMIN, TRANS, UPLO
  246. INTEGER INFO, LDA, N
  247. REAL SCALE
  248. * ..
  249. * .. Array Arguments ..
  250. REAL CNORM( * )
  251. COMPLEX A( LDA, * ), X( * )
  252. * ..
  253. *
  254. * =====================================================================
  255. *
  256. * .. Parameters ..
  257. REAL ZERO, HALF, ONE, TWO
  258. PARAMETER ( ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0,
  259. $ TWO = 2.0E+0 )
  260. * ..
  261. * .. Local Scalars ..
  262. LOGICAL NOTRAN, NOUNIT, UPPER
  263. INTEGER I, IMAX, J, JFIRST, JINC, JLAST
  264. REAL BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
  265. $ XBND, XJ, XMAX
  266. COMPLEX CSUMJ, TJJS, USCAL, ZDUM
  267. * ..
  268. * .. External Functions ..
  269. LOGICAL LSAME
  270. INTEGER ICAMAX, ISAMAX
  271. REAL SCASUM, SLAMCH
  272. COMPLEX CDOTC, CDOTU, CLADIV
  273. EXTERNAL LSAME, ICAMAX, ISAMAX, SCASUM, SLAMCH, CDOTC,
  274. $ CDOTU, CLADIV
  275. * ..
  276. * .. External Subroutines ..
  277. EXTERNAL CAXPY, CSSCAL, CTRSV, SLABAD, SSCAL, XERBLA
  278. * ..
  279. * .. Intrinsic Functions ..
  280. INTRINSIC ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL
  281. * ..
  282. * .. Statement Functions ..
  283. REAL CABS1, CABS2
  284. * ..
  285. * .. Statement Function definitions ..
  286. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
  287. CABS2( ZDUM ) = ABS( REAL( ZDUM ) / 2. ) +
  288. $ ABS( AIMAG( ZDUM ) / 2. )
  289. * ..
  290. * .. Executable Statements ..
  291. *
  292. INFO = 0
  293. UPPER = LSAME( UPLO, 'U' )
  294. NOTRAN = LSAME( TRANS, 'N' )
  295. NOUNIT = LSAME( DIAG, 'N' )
  296. *
  297. * Test the input parameters.
  298. *
  299. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  300. INFO = -1
  301. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  302. $ LSAME( TRANS, 'C' ) ) THEN
  303. INFO = -2
  304. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  305. INFO = -3
  306. ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  307. $ LSAME( NORMIN, 'N' ) ) THEN
  308. INFO = -4
  309. ELSE IF( N.LT.0 ) THEN
  310. INFO = -5
  311. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  312. INFO = -7
  313. END IF
  314. IF( INFO.NE.0 ) THEN
  315. CALL XERBLA( 'CLATRS', -INFO )
  316. RETURN
  317. END IF
  318. *
  319. * Quick return if possible
  320. *
  321. IF( N.EQ.0 )
  322. $ RETURN
  323. *
  324. * Determine machine dependent parameters to control overflow.
  325. *
  326. SMLNUM = SLAMCH( 'Safe minimum' )
  327. BIGNUM = ONE / SMLNUM
  328. CALL SLABAD( SMLNUM, BIGNUM )
  329. SMLNUM = SMLNUM / SLAMCH( 'Precision' )
  330. BIGNUM = ONE / SMLNUM
  331. SCALE = ONE
  332. *
  333. IF( LSAME( NORMIN, 'N' ) ) THEN
  334. *
  335. * Compute the 1-norm of each column, not including the diagonal.
  336. *
  337. IF( UPPER ) THEN
  338. *
  339. * A is upper triangular.
  340. *
  341. DO 10 J = 1, N
  342. CNORM( J ) = SCASUM( J-1, A( 1, J ), 1 )
  343. 10 CONTINUE
  344. ELSE
  345. *
  346. * A is lower triangular.
  347. *
  348. DO 20 J = 1, N - 1
  349. CNORM( J ) = SCASUM( N-J, A( J+1, J ), 1 )
  350. 20 CONTINUE
  351. CNORM( N ) = ZERO
  352. END IF
  353. END IF
  354. *
  355. * Scale the column norms by TSCAL if the maximum element in CNORM is
  356. * greater than BIGNUM/2.
  357. *
  358. IMAX = ISAMAX( N, CNORM, 1 )
  359. TMAX = CNORM( IMAX )
  360. IF( TMAX.LE.BIGNUM*HALF ) THEN
  361. TSCAL = ONE
  362. ELSE
  363. TSCAL = HALF / ( SMLNUM*TMAX )
  364. CALL SSCAL( N, TSCAL, CNORM, 1 )
  365. END IF
  366. *
  367. * Compute a bound on the computed solution vector to see if the
  368. * Level 2 BLAS routine CTRSV can be used.
  369. *
  370. XMAX = ZERO
  371. DO 30 J = 1, N
  372. XMAX = MAX( XMAX, CABS2( X( J ) ) )
  373. 30 CONTINUE
  374. XBND = XMAX
  375. *
  376. IF( NOTRAN ) THEN
  377. *
  378. * Compute the growth in A * x = b.
  379. *
  380. IF( UPPER ) THEN
  381. JFIRST = N
  382. JLAST = 1
  383. JINC = -1
  384. ELSE
  385. JFIRST = 1
  386. JLAST = N
  387. JINC = 1
  388. END IF
  389. *
  390. IF( TSCAL.NE.ONE ) THEN
  391. GROW = ZERO
  392. GO TO 60
  393. END IF
  394. *
  395. IF( NOUNIT ) THEN
  396. *
  397. * A is non-unit triangular.
  398. *
  399. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  400. * Initially, G(0) = max{x(i), i=1,...,n}.
  401. *
  402. GROW = HALF / MAX( XBND, SMLNUM )
  403. XBND = GROW
  404. DO 40 J = JFIRST, JLAST, JINC
  405. *
  406. * Exit the loop if the growth factor is too small.
  407. *
  408. IF( GROW.LE.SMLNUM )
  409. $ GO TO 60
  410. *
  411. TJJS = A( J, J )
  412. TJJ = CABS1( TJJS )
  413. *
  414. IF( TJJ.GE.SMLNUM ) THEN
  415. *
  416. * M(j) = G(j-1) / abs(A(j,j))
  417. *
  418. XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  419. ELSE
  420. *
  421. * M(j) could overflow, set XBND to 0.
  422. *
  423. XBND = ZERO
  424. END IF
  425. *
  426. IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  427. *
  428. * G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  429. *
  430. GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  431. ELSE
  432. *
  433. * G(j) could overflow, set GROW to 0.
  434. *
  435. GROW = ZERO
  436. END IF
  437. 40 CONTINUE
  438. GROW = XBND
  439. ELSE
  440. *
  441. * A is unit triangular.
  442. *
  443. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  444. *
  445. GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  446. DO 50 J = JFIRST, JLAST, JINC
  447. *
  448. * Exit the loop if the growth factor is too small.
  449. *
  450. IF( GROW.LE.SMLNUM )
  451. $ GO TO 60
  452. *
  453. * G(j) = G(j-1)*( 1 + CNORM(j) )
  454. *
  455. GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  456. 50 CONTINUE
  457. END IF
  458. 60 CONTINUE
  459. *
  460. ELSE
  461. *
  462. * Compute the growth in A**T * x = b or A**H * x = b.
  463. *
  464. IF( UPPER ) THEN
  465. JFIRST = 1
  466. JLAST = N
  467. JINC = 1
  468. ELSE
  469. JFIRST = N
  470. JLAST = 1
  471. JINC = -1
  472. END IF
  473. *
  474. IF( TSCAL.NE.ONE ) THEN
  475. GROW = ZERO
  476. GO TO 90
  477. END IF
  478. *
  479. IF( NOUNIT ) THEN
  480. *
  481. * A is non-unit triangular.
  482. *
  483. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  484. * Initially, M(0) = max{x(i), i=1,...,n}.
  485. *
  486. GROW = HALF / MAX( XBND, SMLNUM )
  487. XBND = GROW
  488. DO 70 J = JFIRST, JLAST, JINC
  489. *
  490. * Exit the loop if the growth factor is too small.
  491. *
  492. IF( GROW.LE.SMLNUM )
  493. $ GO TO 90
  494. *
  495. * G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  496. *
  497. XJ = ONE + CNORM( J )
  498. GROW = MIN( GROW, XBND / XJ )
  499. *
  500. TJJS = A( J, J )
  501. TJJ = CABS1( TJJS )
  502. *
  503. IF( TJJ.GE.SMLNUM ) THEN
  504. *
  505. * M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  506. *
  507. IF( XJ.GT.TJJ )
  508. $ XBND = XBND*( TJJ / XJ )
  509. ELSE
  510. *
  511. * M(j) could overflow, set XBND to 0.
  512. *
  513. XBND = ZERO
  514. END IF
  515. 70 CONTINUE
  516. GROW = MIN( GROW, XBND )
  517. ELSE
  518. *
  519. * A is unit triangular.
  520. *
  521. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  522. *
  523. GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  524. DO 80 J = JFIRST, JLAST, JINC
  525. *
  526. * Exit the loop if the growth factor is too small.
  527. *
  528. IF( GROW.LE.SMLNUM )
  529. $ GO TO 90
  530. *
  531. * G(j) = ( 1 + CNORM(j) )*G(j-1)
  532. *
  533. XJ = ONE + CNORM( J )
  534. GROW = GROW / XJ
  535. 80 CONTINUE
  536. END IF
  537. 90 CONTINUE
  538. END IF
  539. *
  540. IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  541. *
  542. * Use the Level 2 BLAS solve if the reciprocal of the bound on
  543. * elements of X is not too small.
  544. *
  545. CALL CTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
  546. ELSE
  547. *
  548. * Use a Level 1 BLAS solve, scaling intermediate results.
  549. *
  550. IF( XMAX.GT.BIGNUM*HALF ) THEN
  551. *
  552. * Scale X so that its components are less than or equal to
  553. * BIGNUM in absolute value.
  554. *
  555. SCALE = ( BIGNUM*HALF ) / XMAX
  556. CALL CSSCAL( N, SCALE, X, 1 )
  557. XMAX = BIGNUM
  558. ELSE
  559. XMAX = XMAX*TWO
  560. END IF
  561. *
  562. IF( NOTRAN ) THEN
  563. *
  564. * Solve A * x = b
  565. *
  566. DO 110 J = JFIRST, JLAST, JINC
  567. *
  568. * Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  569. *
  570. XJ = CABS1( X( J ) )
  571. IF( NOUNIT ) THEN
  572. TJJS = A( J, J )*TSCAL
  573. ELSE
  574. TJJS = TSCAL
  575. IF( TSCAL.EQ.ONE )
  576. $ GO TO 105
  577. END IF
  578. TJJ = CABS1( TJJS )
  579. IF( TJJ.GT.SMLNUM ) THEN
  580. *
  581. * abs(A(j,j)) > SMLNUM:
  582. *
  583. IF( TJJ.LT.ONE ) THEN
  584. IF( XJ.GT.TJJ*BIGNUM ) THEN
  585. *
  586. * Scale x by 1/b(j).
  587. *
  588. REC = ONE / XJ
  589. CALL CSSCAL( N, REC, X, 1 )
  590. SCALE = SCALE*REC
  591. XMAX = XMAX*REC
  592. END IF
  593. END IF
  594. X( J ) = CLADIV( X( J ), TJJS )
  595. XJ = CABS1( X( J ) )
  596. ELSE IF( TJJ.GT.ZERO ) THEN
  597. *
  598. * 0 < abs(A(j,j)) <= SMLNUM:
  599. *
  600. IF( XJ.GT.TJJ*BIGNUM ) THEN
  601. *
  602. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  603. * to avoid overflow when dividing by A(j,j).
  604. *
  605. REC = ( TJJ*BIGNUM ) / XJ
  606. IF( CNORM( J ).GT.ONE ) THEN
  607. *
  608. * Scale by 1/CNORM(j) to avoid overflow when
  609. * multiplying x(j) times column j.
  610. *
  611. REC = REC / CNORM( J )
  612. END IF
  613. CALL CSSCAL( N, REC, X, 1 )
  614. SCALE = SCALE*REC
  615. XMAX = XMAX*REC
  616. END IF
  617. X( J ) = CLADIV( X( J ), TJJS )
  618. XJ = CABS1( X( J ) )
  619. ELSE
  620. *
  621. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  622. * scale = 0, and compute a solution to A*x = 0.
  623. *
  624. DO 100 I = 1, N
  625. X( I ) = ZERO
  626. 100 CONTINUE
  627. X( J ) = ONE
  628. XJ = ONE
  629. SCALE = ZERO
  630. XMAX = ZERO
  631. END IF
  632. 105 CONTINUE
  633. *
  634. * Scale x if necessary to avoid overflow when adding a
  635. * multiple of column j of A.
  636. *
  637. IF( XJ.GT.ONE ) THEN
  638. REC = ONE / XJ
  639. IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  640. *
  641. * Scale x by 1/(2*abs(x(j))).
  642. *
  643. REC = REC*HALF
  644. CALL CSSCAL( N, REC, X, 1 )
  645. SCALE = SCALE*REC
  646. END IF
  647. ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  648. *
  649. * Scale x by 1/2.
  650. *
  651. CALL CSSCAL( N, HALF, X, 1 )
  652. SCALE = SCALE*HALF
  653. END IF
  654. *
  655. IF( UPPER ) THEN
  656. IF( J.GT.1 ) THEN
  657. *
  658. * Compute the update
  659. * x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
  660. *
  661. CALL CAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
  662. $ 1 )
  663. I = ICAMAX( J-1, X, 1 )
  664. XMAX = CABS1( X( I ) )
  665. END IF
  666. ELSE
  667. IF( J.LT.N ) THEN
  668. *
  669. * Compute the update
  670. * x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
  671. *
  672. CALL CAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
  673. $ X( J+1 ), 1 )
  674. I = J + ICAMAX( N-J, X( J+1 ), 1 )
  675. XMAX = CABS1( X( I ) )
  676. END IF
  677. END IF
  678. 110 CONTINUE
  679. *
  680. ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  681. *
  682. * Solve A**T * x = b
  683. *
  684. DO 150 J = JFIRST, JLAST, JINC
  685. *
  686. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  687. * k<>j
  688. *
  689. XJ = CABS1( X( J ) )
  690. USCAL = TSCAL
  691. REC = ONE / MAX( XMAX, ONE )
  692. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  693. *
  694. * If x(j) could overflow, scale x by 1/(2*XMAX).
  695. *
  696. REC = REC*HALF
  697. IF( NOUNIT ) THEN
  698. TJJS = A( J, J )*TSCAL
  699. ELSE
  700. TJJS = TSCAL
  701. END IF
  702. TJJ = CABS1( TJJS )
  703. IF( TJJ.GT.ONE ) THEN
  704. *
  705. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  706. *
  707. REC = MIN( ONE, REC*TJJ )
  708. USCAL = CLADIV( USCAL, TJJS )
  709. END IF
  710. IF( REC.LT.ONE ) THEN
  711. CALL CSSCAL( N, REC, X, 1 )
  712. SCALE = SCALE*REC
  713. XMAX = XMAX*REC
  714. END IF
  715. END IF
  716. *
  717. CSUMJ = ZERO
  718. IF( USCAL.EQ.CMPLX( ONE ) ) THEN
  719. *
  720. * If the scaling needed for A in the dot product is 1,
  721. * call CDOTU to perform the dot product.
  722. *
  723. IF( UPPER ) THEN
  724. CSUMJ = CDOTU( J-1, A( 1, J ), 1, X, 1 )
  725. ELSE IF( J.LT.N ) THEN
  726. CSUMJ = CDOTU( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
  727. END IF
  728. ELSE
  729. *
  730. * Otherwise, use in-line code for the dot product.
  731. *
  732. IF( UPPER ) THEN
  733. DO 120 I = 1, J - 1
  734. CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
  735. 120 CONTINUE
  736. ELSE IF( J.LT.N ) THEN
  737. DO 130 I = J + 1, N
  738. CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
  739. 130 CONTINUE
  740. END IF
  741. END IF
  742. *
  743. IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
  744. *
  745. * Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  746. * was not used to scale the dotproduct.
  747. *
  748. X( J ) = X( J ) - CSUMJ
  749. XJ = CABS1( X( J ) )
  750. IF( NOUNIT ) THEN
  751. TJJS = A( J, J )*TSCAL
  752. ELSE
  753. TJJS = TSCAL
  754. IF( TSCAL.EQ.ONE )
  755. $ GO TO 145
  756. END IF
  757. *
  758. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  759. *
  760. TJJ = CABS1( TJJS )
  761. IF( TJJ.GT.SMLNUM ) THEN
  762. *
  763. * abs(A(j,j)) > SMLNUM:
  764. *
  765. IF( TJJ.LT.ONE ) THEN
  766. IF( XJ.GT.TJJ*BIGNUM ) THEN
  767. *
  768. * Scale X by 1/abs(x(j)).
  769. *
  770. REC = ONE / XJ
  771. CALL CSSCAL( N, REC, X, 1 )
  772. SCALE = SCALE*REC
  773. XMAX = XMAX*REC
  774. END IF
  775. END IF
  776. X( J ) = CLADIV( X( J ), TJJS )
  777. ELSE IF( TJJ.GT.ZERO ) THEN
  778. *
  779. * 0 < abs(A(j,j)) <= SMLNUM:
  780. *
  781. IF( XJ.GT.TJJ*BIGNUM ) THEN
  782. *
  783. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  784. *
  785. REC = ( TJJ*BIGNUM ) / XJ
  786. CALL CSSCAL( N, REC, X, 1 )
  787. SCALE = SCALE*REC
  788. XMAX = XMAX*REC
  789. END IF
  790. X( J ) = CLADIV( X( J ), TJJS )
  791. ELSE
  792. *
  793. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  794. * scale = 0 and compute a solution to A**T *x = 0.
  795. *
  796. DO 140 I = 1, N
  797. X( I ) = ZERO
  798. 140 CONTINUE
  799. X( J ) = ONE
  800. SCALE = ZERO
  801. XMAX = ZERO
  802. END IF
  803. 145 CONTINUE
  804. ELSE
  805. *
  806. * Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  807. * product has already been divided by 1/A(j,j).
  808. *
  809. X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
  810. END IF
  811. XMAX = MAX( XMAX, CABS1( X( J ) ) )
  812. 150 CONTINUE
  813. *
  814. ELSE
  815. *
  816. * Solve A**H * x = b
  817. *
  818. DO 190 J = JFIRST, JLAST, JINC
  819. *
  820. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  821. * k<>j
  822. *
  823. XJ = CABS1( X( J ) )
  824. USCAL = TSCAL
  825. REC = ONE / MAX( XMAX, ONE )
  826. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  827. *
  828. * If x(j) could overflow, scale x by 1/(2*XMAX).
  829. *
  830. REC = REC*HALF
  831. IF( NOUNIT ) THEN
  832. TJJS = CONJG( A( J, J ) )*TSCAL
  833. ELSE
  834. TJJS = TSCAL
  835. END IF
  836. TJJ = CABS1( TJJS )
  837. IF( TJJ.GT.ONE ) THEN
  838. *
  839. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  840. *
  841. REC = MIN( ONE, REC*TJJ )
  842. USCAL = CLADIV( USCAL, TJJS )
  843. END IF
  844. IF( REC.LT.ONE ) THEN
  845. CALL CSSCAL( N, REC, X, 1 )
  846. SCALE = SCALE*REC
  847. XMAX = XMAX*REC
  848. END IF
  849. END IF
  850. *
  851. CSUMJ = ZERO
  852. IF( USCAL.EQ.CMPLX( ONE ) ) THEN
  853. *
  854. * If the scaling needed for A in the dot product is 1,
  855. * call CDOTC to perform the dot product.
  856. *
  857. IF( UPPER ) THEN
  858. CSUMJ = CDOTC( J-1, A( 1, J ), 1, X, 1 )
  859. ELSE IF( J.LT.N ) THEN
  860. CSUMJ = CDOTC( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
  861. END IF
  862. ELSE
  863. *
  864. * Otherwise, use in-line code for the dot product.
  865. *
  866. IF( UPPER ) THEN
  867. DO 160 I = 1, J - 1
  868. CSUMJ = CSUMJ + ( CONJG( A( I, J ) )*USCAL )*
  869. $ X( I )
  870. 160 CONTINUE
  871. ELSE IF( J.LT.N ) THEN
  872. DO 170 I = J + 1, N
  873. CSUMJ = CSUMJ + ( CONJG( A( I, J ) )*USCAL )*
  874. $ X( I )
  875. 170 CONTINUE
  876. END IF
  877. END IF
  878. *
  879. IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
  880. *
  881. * Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  882. * was not used to scale the dotproduct.
  883. *
  884. X( J ) = X( J ) - CSUMJ
  885. XJ = CABS1( X( J ) )
  886. IF( NOUNIT ) THEN
  887. TJJS = CONJG( A( J, J ) )*TSCAL
  888. ELSE
  889. TJJS = TSCAL
  890. IF( TSCAL.EQ.ONE )
  891. $ GO TO 185
  892. END IF
  893. *
  894. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  895. *
  896. TJJ = CABS1( TJJS )
  897. IF( TJJ.GT.SMLNUM ) THEN
  898. *
  899. * abs(A(j,j)) > SMLNUM:
  900. *
  901. IF( TJJ.LT.ONE ) THEN
  902. IF( XJ.GT.TJJ*BIGNUM ) THEN
  903. *
  904. * Scale X by 1/abs(x(j)).
  905. *
  906. REC = ONE / XJ
  907. CALL CSSCAL( N, REC, X, 1 )
  908. SCALE = SCALE*REC
  909. XMAX = XMAX*REC
  910. END IF
  911. END IF
  912. X( J ) = CLADIV( X( J ), TJJS )
  913. ELSE IF( TJJ.GT.ZERO ) THEN
  914. *
  915. * 0 < abs(A(j,j)) <= SMLNUM:
  916. *
  917. IF( XJ.GT.TJJ*BIGNUM ) THEN
  918. *
  919. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  920. *
  921. REC = ( TJJ*BIGNUM ) / XJ
  922. CALL CSSCAL( N, REC, X, 1 )
  923. SCALE = SCALE*REC
  924. XMAX = XMAX*REC
  925. END IF
  926. X( J ) = CLADIV( X( J ), TJJS )
  927. ELSE
  928. *
  929. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  930. * scale = 0 and compute a solution to A**H *x = 0.
  931. *
  932. DO 180 I = 1, N
  933. X( I ) = ZERO
  934. 180 CONTINUE
  935. X( J ) = ONE
  936. SCALE = ZERO
  937. XMAX = ZERO
  938. END IF
  939. 185 CONTINUE
  940. ELSE
  941. *
  942. * Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  943. * product has already been divided by 1/A(j,j).
  944. *
  945. X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
  946. END IF
  947. XMAX = MAX( XMAX, CABS1( X( J ) ) )
  948. 190 CONTINUE
  949. END IF
  950. SCALE = SCALE / TSCAL
  951. END IF
  952. *
  953. * Scale the column norms by 1/TSCAL for return.
  954. *
  955. IF( TSCAL.NE.ONE ) THEN
  956. CALL SSCAL( N, ONE / TSCAL, CNORM, 1 )
  957. END IF
  958. *
  959. RETURN
  960. *
  961. * End of CLATRS
  962. *
  963. END