|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318 |
- *> \brief \b CLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CLAGTM + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clagtm.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clagtm.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clagtm.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
- * B, LDB )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANS
- * INTEGER LDB, LDX, N, NRHS
- * REAL ALPHA, BETA
- * ..
- * .. Array Arguments ..
- * COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ),
- * $ X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLAGTM performs a matrix-vector product of the form
- *>
- *> B := alpha * A * X + beta * B
- *>
- *> where A is a tridiagonal matrix of order N, B and X are N by NRHS
- *> matrices, and alpha and beta are real scalars, each of which may be
- *> 0., 1., or -1.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the operation applied to A.
- *> = 'N': No transpose, B := alpha * A * X + beta * B
- *> = 'T': Transpose, B := alpha * A**T * X + beta * B
- *> = 'C': Conjugate transpose, B := alpha * A**H * X + beta * B
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices X and B.
- *> \endverbatim
- *>
- *> \param[in] ALPHA
- *> \verbatim
- *> ALPHA is REAL
- *> The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise,
- *> it is assumed to be 0.
- *> \endverbatim
- *>
- *> \param[in] DL
- *> \verbatim
- *> DL is COMPLEX array, dimension (N-1)
- *> The (n-1) sub-diagonal elements of T.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is COMPLEX array, dimension (N)
- *> The diagonal elements of T.
- *> \endverbatim
- *>
- *> \param[in] DU
- *> \verbatim
- *> DU is COMPLEX array, dimension (N-1)
- *> The (n-1) super-diagonal elements of T.
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is COMPLEX array, dimension (LDX,NRHS)
- *> The N by NRHS matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(N,1).
- *> \endverbatim
- *>
- *> \param[in] BETA
- *> \verbatim
- *> BETA is REAL
- *> The scalar beta. BETA must be 0., 1., or -1.; otherwise,
- *> it is assumed to be 1.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB,NRHS)
- *> On entry, the N by NRHS matrix B.
- *> On exit, B is overwritten by the matrix expression
- *> B := alpha * A * X + beta * B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(N,1).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexOTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE CLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
- $ B, LDB )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER TRANS
- INTEGER LDB, LDX, N, NRHS
- REAL ALPHA, BETA
- * ..
- * .. Array Arguments ..
- COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ),
- $ X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CONJG
- * ..
- * .. Executable Statements ..
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Multiply B by BETA if BETA.NE.1.
- *
- IF( BETA.EQ.ZERO ) THEN
- DO 20 J = 1, NRHS
- DO 10 I = 1, N
- B( I, J ) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- ELSE IF( BETA.EQ.-ONE ) THEN
- DO 40 J = 1, NRHS
- DO 30 I = 1, N
- B( I, J ) = -B( I, J )
- 30 CONTINUE
- 40 CONTINUE
- END IF
- *
- IF( ALPHA.EQ.ONE ) THEN
- IF( LSAME( TRANS, 'N' ) ) THEN
- *
- * Compute B := B + A*X
- *
- DO 60 J = 1, NRHS
- IF( N.EQ.1 ) THEN
- B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
- ELSE
- B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
- $ DU( 1 )*X( 2, J )
- B( N, J ) = B( N, J ) + DL( N-1 )*X( N-1, J ) +
- $ D( N )*X( N, J )
- DO 50 I = 2, N - 1
- B( I, J ) = B( I, J ) + DL( I-1 )*X( I-1, J ) +
- $ D( I )*X( I, J ) + DU( I )*X( I+1, J )
- 50 CONTINUE
- END IF
- 60 CONTINUE
- ELSE IF( LSAME( TRANS, 'T' ) ) THEN
- *
- * Compute B := B + A**T * X
- *
- DO 80 J = 1, NRHS
- IF( N.EQ.1 ) THEN
- B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
- ELSE
- B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
- $ DL( 1 )*X( 2, J )
- B( N, J ) = B( N, J ) + DU( N-1 )*X( N-1, J ) +
- $ D( N )*X( N, J )
- DO 70 I = 2, N - 1
- B( I, J ) = B( I, J ) + DU( I-1 )*X( I-1, J ) +
- $ D( I )*X( I, J ) + DL( I )*X( I+1, J )
- 70 CONTINUE
- END IF
- 80 CONTINUE
- ELSE IF( LSAME( TRANS, 'C' ) ) THEN
- *
- * Compute B := B + A**H * X
- *
- DO 100 J = 1, NRHS
- IF( N.EQ.1 ) THEN
- B( 1, J ) = B( 1, J ) + CONJG( D( 1 ) )*X( 1, J )
- ELSE
- B( 1, J ) = B( 1, J ) + CONJG( D( 1 ) )*X( 1, J ) +
- $ CONJG( DL( 1 ) )*X( 2, J )
- B( N, J ) = B( N, J ) + CONJG( DU( N-1 ) )*
- $ X( N-1, J ) + CONJG( D( N ) )*X( N, J )
- DO 90 I = 2, N - 1
- B( I, J ) = B( I, J ) + CONJG( DU( I-1 ) )*
- $ X( I-1, J ) + CONJG( D( I ) )*
- $ X( I, J ) + CONJG( DL( I ) )*
- $ X( I+1, J )
- 90 CONTINUE
- END IF
- 100 CONTINUE
- END IF
- ELSE IF( ALPHA.EQ.-ONE ) THEN
- IF( LSAME( TRANS, 'N' ) ) THEN
- *
- * Compute B := B - A*X
- *
- DO 120 J = 1, NRHS
- IF( N.EQ.1 ) THEN
- B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
- ELSE
- B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
- $ DU( 1 )*X( 2, J )
- B( N, J ) = B( N, J ) - DL( N-1 )*X( N-1, J ) -
- $ D( N )*X( N, J )
- DO 110 I = 2, N - 1
- B( I, J ) = B( I, J ) - DL( I-1 )*X( I-1, J ) -
- $ D( I )*X( I, J ) - DU( I )*X( I+1, J )
- 110 CONTINUE
- END IF
- 120 CONTINUE
- ELSE IF( LSAME( TRANS, 'T' ) ) THEN
- *
- * Compute B := B - A**T*X
- *
- DO 140 J = 1, NRHS
- IF( N.EQ.1 ) THEN
- B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
- ELSE
- B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
- $ DL( 1 )*X( 2, J )
- B( N, J ) = B( N, J ) - DU( N-1 )*X( N-1, J ) -
- $ D( N )*X( N, J )
- DO 130 I = 2, N - 1
- B( I, J ) = B( I, J ) - DU( I-1 )*X( I-1, J ) -
- $ D( I )*X( I, J ) - DL( I )*X( I+1, J )
- 130 CONTINUE
- END IF
- 140 CONTINUE
- ELSE IF( LSAME( TRANS, 'C' ) ) THEN
- *
- * Compute B := B - A**H*X
- *
- DO 160 J = 1, NRHS
- IF( N.EQ.1 ) THEN
- B( 1, J ) = B( 1, J ) - CONJG( D( 1 ) )*X( 1, J )
- ELSE
- B( 1, J ) = B( 1, J ) - CONJG( D( 1 ) )*X( 1, J ) -
- $ CONJG( DL( 1 ) )*X( 2, J )
- B( N, J ) = B( N, J ) - CONJG( DU( N-1 ) )*
- $ X( N-1, J ) - CONJG( D( N ) )*X( N, J )
- DO 150 I = 2, N - 1
- B( I, J ) = B( I, J ) - CONJG( DU( I-1 ) )*
- $ X( I-1, J ) - CONJG( D( I ) )*
- $ X( I, J ) - CONJG( DL( I ) )*
- $ X( I+1, J )
- 150 CONTINUE
- END IF
- 160 CONTINUE
- END IF
- END IF
- RETURN
- *
- * End of CLAGTM
- *
- END
|