You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chetri_3x.f 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646
  1. *> \brief \b CHETRI_3X
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHETRI_3X + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetri_3x.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetri_3x.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetri_3x.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHETRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, N, NB
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX A( LDA, * ), E( * ), WORK( N+NB+1, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *> CHETRI_3X computes the inverse of a complex Hermitian indefinite
  38. *> matrix A using the factorization computed by CHETRF_RK or CHETRF_BK:
  39. *>
  40. *> A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T),
  41. *>
  42. *> where U (or L) is unit upper (or lower) triangular matrix,
  43. *> U**H (or L**H) is the conjugate of U (or L), P is a permutation
  44. *> matrix, P**T is the transpose of P, and D is Hermitian and block
  45. *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
  46. *>
  47. *> This is the blocked version of the algorithm, calling Level 3 BLAS.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] UPLO
  54. *> \verbatim
  55. *> UPLO is CHARACTER*1
  56. *> Specifies whether the details of the factorization are
  57. *> stored as an upper or lower triangular matrix.
  58. *> = 'U': Upper triangle of A is stored;
  59. *> = 'L': Lower triangle of A is stored.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The order of the matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in,out] A
  69. *> \verbatim
  70. *> A is COMPLEX array, dimension (LDA,N)
  71. *> On entry, diagonal of the block diagonal matrix D and
  72. *> factors U or L as computed by CHETRF_RK and CHETRF_BK:
  73. *> a) ONLY diagonal elements of the Hermitian block diagonal
  74. *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
  75. *> (superdiagonal (or subdiagonal) elements of D
  76. *> should be provided on entry in array E), and
  77. *> b) If UPLO = 'U': factor U in the superdiagonal part of A.
  78. *> If UPLO = 'L': factor L in the subdiagonal part of A.
  79. *>
  80. *> On exit, if INFO = 0, the Hermitian inverse of the original
  81. *> matrix.
  82. *> If UPLO = 'U': the upper triangular part of the inverse
  83. *> is formed and the part of A below the diagonal is not
  84. *> referenced;
  85. *> If UPLO = 'L': the lower triangular part of the inverse
  86. *> is formed and the part of A above the diagonal is not
  87. *> referenced.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] LDA
  91. *> \verbatim
  92. *> LDA is INTEGER
  93. *> The leading dimension of the array A. LDA >= max(1,N).
  94. *> \endverbatim
  95. *>
  96. *> \param[in] E
  97. *> \verbatim
  98. *> E is COMPLEX array, dimension (N)
  99. *> On entry, contains the superdiagonal (or subdiagonal)
  100. *> elements of the Hermitian block diagonal matrix D
  101. *> with 1-by-1 or 2-by-2 diagonal blocks, where
  102. *> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced;
  103. *> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced.
  104. *>
  105. *> NOTE: For 1-by-1 diagonal block D(k), where
  106. *> 1 <= k <= N, the element E(k) is not referenced in both
  107. *> UPLO = 'U' or UPLO = 'L' cases.
  108. *> \endverbatim
  109. *>
  110. *> \param[in] IPIV
  111. *> \verbatim
  112. *> IPIV is INTEGER array, dimension (N)
  113. *> Details of the interchanges and the block structure of D
  114. *> as determined by CHETRF_RK or CHETRF_BK.
  115. *> \endverbatim
  116. *>
  117. *> \param[out] WORK
  118. *> \verbatim
  119. *> WORK is COMPLEX array, dimension (N+NB+1,NB+3).
  120. *> \endverbatim
  121. *>
  122. *> \param[in] NB
  123. *> \verbatim
  124. *> NB is INTEGER
  125. *> Block size.
  126. *> \endverbatim
  127. *>
  128. *> \param[out] INFO
  129. *> \verbatim
  130. *> INFO is INTEGER
  131. *> = 0: successful exit
  132. *> < 0: if INFO = -i, the i-th argument had an illegal value
  133. *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
  134. *> inverse could not be computed.
  135. *> \endverbatim
  136. *
  137. * Authors:
  138. * ========
  139. *
  140. *> \author Univ. of Tennessee
  141. *> \author Univ. of California Berkeley
  142. *> \author Univ. of Colorado Denver
  143. *> \author NAG Ltd.
  144. *
  145. *> \ingroup complexHEcomputational
  146. *
  147. *> \par Contributors:
  148. * ==================
  149. *> \verbatim
  150. *>
  151. *> June 2017, Igor Kozachenko,
  152. *> Computer Science Division,
  153. *> University of California, Berkeley
  154. *>
  155. *> \endverbatim
  156. *
  157. * =====================================================================
  158. SUBROUTINE CHETRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
  159. *
  160. * -- LAPACK computational routine --
  161. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  162. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  163. *
  164. * .. Scalar Arguments ..
  165. CHARACTER UPLO
  166. INTEGER INFO, LDA, N, NB
  167. * ..
  168. * .. Array Arguments ..
  169. INTEGER IPIV( * )
  170. COMPLEX A( LDA, * ), E( * ), WORK( N+NB+1, * )
  171. * ..
  172. *
  173. * =====================================================================
  174. *
  175. * .. Parameters ..
  176. REAL ONE
  177. PARAMETER ( ONE = 1.0E+0 )
  178. COMPLEX CONE, CZERO
  179. PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ),
  180. $ CZERO = ( 0.0E+0, 0.0E+0 ) )
  181. * ..
  182. * .. Local Scalars ..
  183. LOGICAL UPPER
  184. INTEGER CUT, I, ICOUNT, INVD, IP, K, NNB, J, U11
  185. REAL AK, AKP1, T
  186. COMPLEX AKKP1, D, U01_I_J, U01_IP1_J, U11_I_J,
  187. $ U11_IP1_J
  188. * ..
  189. * .. External Functions ..
  190. LOGICAL LSAME
  191. EXTERNAL LSAME
  192. * ..
  193. * .. External Subroutines ..
  194. EXTERNAL CGEMM, CHESWAPR, CTRTRI, CTRMM, XERBLA
  195. * ..
  196. * .. Intrinsic Functions ..
  197. INTRINSIC ABS, CONJG, MAX, REAL
  198. * ..
  199. * .. Executable Statements ..
  200. *
  201. * Test the input parameters.
  202. *
  203. INFO = 0
  204. UPPER = LSAME( UPLO, 'U' )
  205. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  206. INFO = -1
  207. ELSE IF( N.LT.0 ) THEN
  208. INFO = -2
  209. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  210. INFO = -4
  211. END IF
  212. *
  213. * Quick return if possible
  214. *
  215. IF( INFO.NE.0 ) THEN
  216. CALL XERBLA( 'CHETRI_3X', -INFO )
  217. RETURN
  218. END IF
  219. IF( N.EQ.0 )
  220. $ RETURN
  221. *
  222. * Workspace got Non-diag elements of D
  223. *
  224. DO K = 1, N
  225. WORK( K, 1 ) = E( K )
  226. END DO
  227. *
  228. * Check that the diagonal matrix D is nonsingular.
  229. *
  230. IF( UPPER ) THEN
  231. *
  232. * Upper triangular storage: examine D from bottom to top
  233. *
  234. DO INFO = N, 1, -1
  235. IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
  236. $ RETURN
  237. END DO
  238. ELSE
  239. *
  240. * Lower triangular storage: examine D from top to bottom.
  241. *
  242. DO INFO = 1, N
  243. IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
  244. $ RETURN
  245. END DO
  246. END IF
  247. *
  248. INFO = 0
  249. *
  250. * Splitting Workspace
  251. * U01 is a block ( N, NB+1 )
  252. * The first element of U01 is in WORK( 1, 1 )
  253. * U11 is a block ( NB+1, NB+1 )
  254. * The first element of U11 is in WORK( N+1, 1 )
  255. *
  256. U11 = N
  257. *
  258. * INVD is a block ( N, 2 )
  259. * The first element of INVD is in WORK( 1, INVD )
  260. *
  261. INVD = NB + 2
  262. IF( UPPER ) THEN
  263. *
  264. * Begin Upper
  265. *
  266. * invA = P * inv(U**H) * inv(D) * inv(U) * P**T.
  267. *
  268. CALL CTRTRI( UPLO, 'U', N, A, LDA, INFO )
  269. *
  270. * inv(D) and inv(D) * inv(U)
  271. *
  272. K = 1
  273. DO WHILE( K.LE.N )
  274. IF( IPIV( K ).GT.0 ) THEN
  275. * 1 x 1 diagonal NNB
  276. WORK( K, INVD ) = ONE / REAL( A( K, K ) )
  277. WORK( K, INVD+1 ) = CZERO
  278. ELSE
  279. * 2 x 2 diagonal NNB
  280. T = ABS( WORK( K+1, 1 ) )
  281. AK = REAL( A( K, K ) ) / T
  282. AKP1 = REAL( A( K+1, K+1 ) ) / T
  283. AKKP1 = WORK( K+1, 1 ) / T
  284. D = T*( AK*AKP1-CONE )
  285. WORK( K, INVD ) = AKP1 / D
  286. WORK( K+1, INVD+1 ) = AK / D
  287. WORK( K, INVD+1 ) = -AKKP1 / D
  288. WORK( K+1, INVD ) = CONJG( WORK( K, INVD+1 ) )
  289. K = K + 1
  290. END IF
  291. K = K + 1
  292. END DO
  293. *
  294. * inv(U**H) = (inv(U))**H
  295. *
  296. * inv(U**H) * inv(D) * inv(U)
  297. *
  298. CUT = N
  299. DO WHILE( CUT.GT.0 )
  300. NNB = NB
  301. IF( CUT.LE.NNB ) THEN
  302. NNB = CUT
  303. ELSE
  304. ICOUNT = 0
  305. * count negative elements,
  306. DO I = CUT+1-NNB, CUT
  307. IF( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
  308. END DO
  309. * need a even number for a clear cut
  310. IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
  311. END IF
  312. CUT = CUT - NNB
  313. *
  314. * U01 Block
  315. *
  316. DO I = 1, CUT
  317. DO J = 1, NNB
  318. WORK( I, J ) = A( I, CUT+J )
  319. END DO
  320. END DO
  321. *
  322. * U11 Block
  323. *
  324. DO I = 1, NNB
  325. WORK( U11+I, I ) = CONE
  326. DO J = 1, I-1
  327. WORK( U11+I, J ) = CZERO
  328. END DO
  329. DO J = I+1, NNB
  330. WORK( U11+I, J ) = A( CUT+I, CUT+J )
  331. END DO
  332. END DO
  333. *
  334. * invD * U01
  335. *
  336. I = 1
  337. DO WHILE( I.LE.CUT )
  338. IF( IPIV( I ).GT.0 ) THEN
  339. DO J = 1, NNB
  340. WORK( I, J ) = WORK( I, INVD ) * WORK( I, J )
  341. END DO
  342. ELSE
  343. DO J = 1, NNB
  344. U01_I_J = WORK( I, J )
  345. U01_IP1_J = WORK( I+1, J )
  346. WORK( I, J ) = WORK( I, INVD ) * U01_I_J
  347. $ + WORK( I, INVD+1 ) * U01_IP1_J
  348. WORK( I+1, J ) = WORK( I+1, INVD ) * U01_I_J
  349. $ + WORK( I+1, INVD+1 ) * U01_IP1_J
  350. END DO
  351. I = I + 1
  352. END IF
  353. I = I + 1
  354. END DO
  355. *
  356. * invD1 * U11
  357. *
  358. I = 1
  359. DO WHILE ( I.LE.NNB )
  360. IF( IPIV( CUT+I ).GT.0 ) THEN
  361. DO J = I, NNB
  362. WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  363. END DO
  364. ELSE
  365. DO J = I, NNB
  366. U11_I_J = WORK(U11+I,J)
  367. U11_IP1_J = WORK(U11+I+1,J)
  368. WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  369. $ + WORK(CUT+I,INVD+1) * WORK(U11+I+1,J)
  370. WORK( U11+I+1, J ) = WORK(CUT+I+1,INVD) * U11_I_J
  371. $ + WORK(CUT+I+1,INVD+1) * U11_IP1_J
  372. END DO
  373. I = I + 1
  374. END IF
  375. I = I + 1
  376. END DO
  377. *
  378. * U11**H * invD1 * U11 -> U11
  379. *
  380. CALL CTRMM( 'L', 'U', 'C', 'U', NNB, NNB,
  381. $ CONE, A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
  382. $ N+NB+1 )
  383. *
  384. DO I = 1, NNB
  385. DO J = I, NNB
  386. A( CUT+I, CUT+J ) = WORK( U11+I, J )
  387. END DO
  388. END DO
  389. *
  390. * U01**H * invD * U01 -> A( CUT+I, CUT+J )
  391. *
  392. CALL CGEMM( 'C', 'N', NNB, NNB, CUT, CONE, A( 1, CUT+1 ),
  393. $ LDA, WORK, N+NB+1, CZERO, WORK(U11+1,1),
  394. $ N+NB+1 )
  395. *
  396. * U11 = U11**H * invD1 * U11 + U01**H * invD * U01
  397. *
  398. DO I = 1, NNB
  399. DO J = I, NNB
  400. A( CUT+I, CUT+J ) = A( CUT+I, CUT+J ) + WORK(U11+I,J)
  401. END DO
  402. END DO
  403. *
  404. * U01 = U00**H * invD0 * U01
  405. *
  406. CALL CTRMM( 'L', UPLO, 'C', 'U', CUT, NNB,
  407. $ CONE, A, LDA, WORK, N+NB+1 )
  408. *
  409. * Update U01
  410. *
  411. DO I = 1, CUT
  412. DO J = 1, NNB
  413. A( I, CUT+J ) = WORK( I, J )
  414. END DO
  415. END DO
  416. *
  417. * Next Block
  418. *
  419. END DO
  420. *
  421. * Apply PERMUTATIONS P and P**T:
  422. * P * inv(U**H) * inv(D) * inv(U) * P**T.
  423. * Interchange rows and columns I and IPIV(I) in reverse order
  424. * from the formation order of IPIV vector for Upper case.
  425. *
  426. * ( We can use a loop over IPIV with increment 1,
  427. * since the ABS value of IPIV(I) represents the row (column)
  428. * index of the interchange with row (column) i in both 1x1
  429. * and 2x2 pivot cases, i.e. we don't need separate code branches
  430. * for 1x1 and 2x2 pivot cases )
  431. *
  432. DO I = 1, N
  433. IP = ABS( IPIV( I ) )
  434. IF( IP.NE.I ) THEN
  435. IF (I .LT. IP) CALL CHESWAPR( UPLO, N, A, LDA, I ,IP )
  436. IF (I .GT. IP) CALL CHESWAPR( UPLO, N, A, LDA, IP ,I )
  437. END IF
  438. END DO
  439. *
  440. ELSE
  441. *
  442. * Begin Lower
  443. *
  444. * inv A = P * inv(L**H) * inv(D) * inv(L) * P**T.
  445. *
  446. CALL CTRTRI( UPLO, 'U', N, A, LDA, INFO )
  447. *
  448. * inv(D) and inv(D) * inv(L)
  449. *
  450. K = N
  451. DO WHILE ( K .GE. 1 )
  452. IF( IPIV( K ).GT.0 ) THEN
  453. * 1 x 1 diagonal NNB
  454. WORK( K, INVD ) = ONE / REAL( A( K, K ) )
  455. WORK( K, INVD+1 ) = CZERO
  456. ELSE
  457. * 2 x 2 diagonal NNB
  458. T = ABS( WORK( K-1, 1 ) )
  459. AK = REAL( A( K-1, K-1 ) ) / T
  460. AKP1 = REAL( A( K, K ) ) / T
  461. AKKP1 = WORK( K-1, 1 ) / T
  462. D = T*( AK*AKP1-CONE )
  463. WORK( K-1, INVD ) = AKP1 / D
  464. WORK( K, INVD ) = AK / D
  465. WORK( K, INVD+1 ) = -AKKP1 / D
  466. WORK( K-1, INVD+1 ) = CONJG( WORK( K, INVD+1 ) )
  467. K = K - 1
  468. END IF
  469. K = K - 1
  470. END DO
  471. *
  472. * inv(L**H) = (inv(L))**H
  473. *
  474. * inv(L**H) * inv(D) * inv(L)
  475. *
  476. CUT = 0
  477. DO WHILE( CUT.LT.N )
  478. NNB = NB
  479. IF( (CUT + NNB).GT.N ) THEN
  480. NNB = N - CUT
  481. ELSE
  482. ICOUNT = 0
  483. * count negative elements,
  484. DO I = CUT + 1, CUT+NNB
  485. IF ( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
  486. END DO
  487. * need a even number for a clear cut
  488. IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
  489. END IF
  490. *
  491. * L21 Block
  492. *
  493. DO I = 1, N-CUT-NNB
  494. DO J = 1, NNB
  495. WORK( I, J ) = A( CUT+NNB+I, CUT+J )
  496. END DO
  497. END DO
  498. *
  499. * L11 Block
  500. *
  501. DO I = 1, NNB
  502. WORK( U11+I, I) = CONE
  503. DO J = I+1, NNB
  504. WORK( U11+I, J ) = CZERO
  505. END DO
  506. DO J = 1, I-1
  507. WORK( U11+I, J ) = A( CUT+I, CUT+J )
  508. END DO
  509. END DO
  510. *
  511. * invD*L21
  512. *
  513. I = N-CUT-NNB
  514. DO WHILE( I.GE.1 )
  515. IF( IPIV( CUT+NNB+I ).GT.0 ) THEN
  516. DO J = 1, NNB
  517. WORK( I, J ) = WORK( CUT+NNB+I, INVD) * WORK( I, J)
  518. END DO
  519. ELSE
  520. DO J = 1, NNB
  521. U01_I_J = WORK(I,J)
  522. U01_IP1_J = WORK(I-1,J)
  523. WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
  524. $ WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
  525. WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
  526. $ WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
  527. END DO
  528. I = I - 1
  529. END IF
  530. I = I - 1
  531. END DO
  532. *
  533. * invD1*L11
  534. *
  535. I = NNB
  536. DO WHILE( I.GE.1 )
  537. IF( IPIV( CUT+I ).GT.0 ) THEN
  538. DO J = 1, NNB
  539. WORK( U11+I, J ) = WORK( CUT+I, INVD)*WORK(U11+I,J)
  540. END DO
  541. ELSE
  542. DO J = 1, NNB
  543. U11_I_J = WORK( U11+I, J )
  544. U11_IP1_J = WORK( U11+I-1, J )
  545. WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
  546. $ + WORK(CUT+I,INVD+1) * U11_IP1_J
  547. WORK( U11+I-1, J ) = WORK(CUT+I-1,INVD+1) * U11_I_J
  548. $ + WORK(CUT+I-1,INVD) * U11_IP1_J
  549. END DO
  550. I = I - 1
  551. END IF
  552. I = I - 1
  553. END DO
  554. *
  555. * L11**H * invD1 * L11 -> L11
  556. *
  557. CALL CTRMM( 'L', UPLO, 'C', 'U', NNB, NNB, CONE,
  558. $ A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
  559. $ N+NB+1 )
  560. *
  561. DO I = 1, NNB
  562. DO J = 1, I
  563. A( CUT+I, CUT+J ) = WORK( U11+I, J )
  564. END DO
  565. END DO
  566. *
  567. IF( (CUT+NNB).LT.N ) THEN
  568. *
  569. * L21**H * invD2*L21 -> A( CUT+I, CUT+J )
  570. *
  571. CALL CGEMM( 'C', 'N', NNB, NNB, N-NNB-CUT, CONE,
  572. $ A( CUT+NNB+1, CUT+1 ), LDA, WORK, N+NB+1,
  573. $ CZERO, WORK( U11+1, 1 ), N+NB+1 )
  574. *
  575. * L11 = L11**H * invD1 * L11 + U01**H * invD * U01
  576. *
  577. DO I = 1, NNB
  578. DO J = 1, I
  579. A( CUT+I, CUT+J ) = A( CUT+I, CUT+J )+WORK(U11+I,J)
  580. END DO
  581. END DO
  582. *
  583. * L01 = L22**H * invD2 * L21
  584. *
  585. CALL CTRMM( 'L', UPLO, 'C', 'U', N-NNB-CUT, NNB, CONE,
  586. $ A( CUT+NNB+1, CUT+NNB+1 ), LDA, WORK,
  587. $ N+NB+1 )
  588. *
  589. * Update L21
  590. *
  591. DO I = 1, N-CUT-NNB
  592. DO J = 1, NNB
  593. A( CUT+NNB+I, CUT+J ) = WORK( I, J )
  594. END DO
  595. END DO
  596. *
  597. ELSE
  598. *
  599. * L11 = L11**H * invD1 * L11
  600. *
  601. DO I = 1, NNB
  602. DO J = 1, I
  603. A( CUT+I, CUT+J ) = WORK( U11+I, J )
  604. END DO
  605. END DO
  606. END IF
  607. *
  608. * Next Block
  609. *
  610. CUT = CUT + NNB
  611. *
  612. END DO
  613. *
  614. * Apply PERMUTATIONS P and P**T:
  615. * P * inv(L**H) * inv(D) * inv(L) * P**T.
  616. * Interchange rows and columns I and IPIV(I) in reverse order
  617. * from the formation order of IPIV vector for Lower case.
  618. *
  619. * ( We can use a loop over IPIV with increment -1,
  620. * since the ABS value of IPIV(I) represents the row (column)
  621. * index of the interchange with row (column) i in both 1x1
  622. * and 2x2 pivot cases, i.e. we don't need separate code branches
  623. * for 1x1 and 2x2 pivot cases )
  624. *
  625. DO I = N, 1, -1
  626. IP = ABS( IPIV( I ) )
  627. IF( IP.NE.I ) THEN
  628. IF (I .LT. IP) CALL CHESWAPR( UPLO, N, A, LDA, I ,IP )
  629. IF (I .GT. IP) CALL CHESWAPR( UPLO, N, A, LDA, IP ,I )
  630. END IF
  631. END DO
  632. *
  633. END IF
  634. *
  635. RETURN
  636. *
  637. * End of CHETRI_3X
  638. *
  639. END