You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlagge.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371
  1. *> \brief \b ZLAGGE
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO )
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER INFO, KL, KU, LDA, M, N
  15. * ..
  16. * .. Array Arguments ..
  17. * INTEGER ISEED( 4 )
  18. * DOUBLE PRECISION D( * )
  19. * COMPLEX*16 A( LDA, * ), WORK( * )
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> ZLAGGE generates a complex general m by n matrix A, by pre- and post-
  29. *> multiplying a real diagonal matrix D with random unitary matrices:
  30. *> A = U*D*V. The lower and upper bandwidths may then be reduced to
  31. *> kl and ku by additional unitary transformations.
  32. *> \endverbatim
  33. *
  34. * Arguments:
  35. * ==========
  36. *
  37. *> \param[in] M
  38. *> \verbatim
  39. *> M is INTEGER
  40. *> The number of rows of the matrix A. M >= 0.
  41. *> \endverbatim
  42. *>
  43. *> \param[in] N
  44. *> \verbatim
  45. *> N is INTEGER
  46. *> The number of columns of the matrix A. N >= 0.
  47. *> \endverbatim
  48. *>
  49. *> \param[in] KL
  50. *> \verbatim
  51. *> KL is INTEGER
  52. *> The number of nonzero subdiagonals within the band of A.
  53. *> 0 <= KL <= M-1.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] KU
  57. *> \verbatim
  58. *> KU is INTEGER
  59. *> The number of nonzero superdiagonals within the band of A.
  60. *> 0 <= KU <= N-1.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] D
  64. *> \verbatim
  65. *> D is DOUBLE PRECISION array, dimension (min(M,N))
  66. *> The diagonal elements of the diagonal matrix D.
  67. *> \endverbatim
  68. *>
  69. *> \param[out] A
  70. *> \verbatim
  71. *> A is COMPLEX*16 array, dimension (LDA,N)
  72. *> The generated m by n matrix A.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the array A. LDA >= M.
  79. *> \endverbatim
  80. *>
  81. *> \param[in,out] ISEED
  82. *> \verbatim
  83. *> ISEED is INTEGER array, dimension (4)
  84. *> On entry, the seed of the random number generator; the array
  85. *> elements must be between 0 and 4095, and ISEED(4) must be
  86. *> odd.
  87. *> On exit, the seed is updated.
  88. *> \endverbatim
  89. *>
  90. *> \param[out] WORK
  91. *> \verbatim
  92. *> WORK is COMPLEX*16 array, dimension (M+N)
  93. *> \endverbatim
  94. *>
  95. *> \param[out] INFO
  96. *> \verbatim
  97. *> INFO is INTEGER
  98. *> = 0: successful exit
  99. *> < 0: if INFO = -i, the i-th argument had an illegal value
  100. *> \endverbatim
  101. *
  102. * Authors:
  103. * ========
  104. *
  105. *> \author Univ. of Tennessee
  106. *> \author Univ. of California Berkeley
  107. *> \author Univ. of Colorado Denver
  108. *> \author NAG Ltd.
  109. *
  110. *> \date December 2016
  111. *
  112. *> \ingroup complex16_matgen
  113. *
  114. * =====================================================================
  115. SUBROUTINE ZLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO )
  116. *
  117. * -- LAPACK auxiliary routine (version 3.7.0) --
  118. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  119. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  120. * December 2016
  121. *
  122. * .. Scalar Arguments ..
  123. INTEGER INFO, KL, KU, LDA, M, N
  124. * ..
  125. * .. Array Arguments ..
  126. INTEGER ISEED( 4 )
  127. DOUBLE PRECISION D( * )
  128. COMPLEX*16 A( LDA, * ), WORK( * )
  129. * ..
  130. *
  131. * =====================================================================
  132. *
  133. * .. Parameters ..
  134. COMPLEX*16 ZERO, ONE
  135. PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
  136. $ ONE = ( 1.0D+0, 0.0D+0 ) )
  137. * ..
  138. * .. Local Scalars ..
  139. INTEGER I, J
  140. DOUBLE PRECISION WN
  141. COMPLEX*16 TAU, WA, WB
  142. * ..
  143. * .. External Subroutines ..
  144. EXTERNAL XERBLA, ZGEMV, ZGERC, ZLACGV, ZLARNV, ZSCAL
  145. * ..
  146. * .. Intrinsic Functions ..
  147. INTRINSIC ABS, DBLE, MAX, MIN
  148. * ..
  149. * .. External Functions ..
  150. DOUBLE PRECISION DZNRM2
  151. EXTERNAL DZNRM2
  152. * ..
  153. * .. Executable Statements ..
  154. *
  155. * Test the input arguments
  156. *
  157. INFO = 0
  158. IF( M.LT.0 ) THEN
  159. INFO = -1
  160. ELSE IF( N.LT.0 ) THEN
  161. INFO = -2
  162. ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN
  163. INFO = -3
  164. ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
  165. INFO = -4
  166. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  167. INFO = -7
  168. END IF
  169. IF( INFO.LT.0 ) THEN
  170. CALL XERBLA( 'ZLAGGE', -INFO )
  171. RETURN
  172. END IF
  173. *
  174. * initialize A to diagonal matrix
  175. *
  176. DO 20 J = 1, N
  177. DO 10 I = 1, M
  178. A( I, J ) = ZERO
  179. 10 CONTINUE
  180. 20 CONTINUE
  181. DO 30 I = 1, MIN( M, N )
  182. A( I, I ) = D( I )
  183. 30 CONTINUE
  184. *
  185. * Quick exit if the user wants a diagonal matrix
  186. *
  187. IF(( KL .EQ. 0 ).AND.( KU .EQ. 0)) RETURN
  188. *
  189. * pre- and post-multiply A by random unitary matrices
  190. *
  191. DO 40 I = MIN( M, N ), 1, -1
  192. IF( I.LT.M ) THEN
  193. *
  194. * generate random reflection
  195. *
  196. CALL ZLARNV( 3, ISEED, M-I+1, WORK )
  197. WN = DZNRM2( M-I+1, WORK, 1 )
  198. WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
  199. IF( WN.EQ.ZERO ) THEN
  200. TAU = ZERO
  201. ELSE
  202. WB = WORK( 1 ) + WA
  203. CALL ZSCAL( M-I, ONE / WB, WORK( 2 ), 1 )
  204. WORK( 1 ) = ONE
  205. TAU = DBLE( WB / WA )
  206. END IF
  207. *
  208. * multiply A(i:m,i:n) by random reflection from the left
  209. *
  210. CALL ZGEMV( 'Conjugate transpose', M-I+1, N-I+1, ONE,
  211. $ A( I, I ), LDA, WORK, 1, ZERO, WORK( M+1 ), 1 )
  212. CALL ZGERC( M-I+1, N-I+1, -TAU, WORK, 1, WORK( M+1 ), 1,
  213. $ A( I, I ), LDA )
  214. END IF
  215. IF( I.LT.N ) THEN
  216. *
  217. * generate random reflection
  218. *
  219. CALL ZLARNV( 3, ISEED, N-I+1, WORK )
  220. WN = DZNRM2( N-I+1, WORK, 1 )
  221. WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
  222. IF( WN.EQ.ZERO ) THEN
  223. TAU = ZERO
  224. ELSE
  225. WB = WORK( 1 ) + WA
  226. CALL ZSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
  227. WORK( 1 ) = ONE
  228. TAU = DBLE( WB / WA )
  229. END IF
  230. *
  231. * multiply A(i:m,i:n) by random reflection from the right
  232. *
  233. CALL ZGEMV( 'No transpose', M-I+1, N-I+1, ONE, A( I, I ),
  234. $ LDA, WORK, 1, ZERO, WORK( N+1 ), 1 )
  235. CALL ZGERC( M-I+1, N-I+1, -TAU, WORK( N+1 ), 1, WORK, 1,
  236. $ A( I, I ), LDA )
  237. END IF
  238. 40 CONTINUE
  239. *
  240. * Reduce number of subdiagonals to KL and number of superdiagonals
  241. * to KU
  242. *
  243. DO 70 I = 1, MAX( M-1-KL, N-1-KU )
  244. IF( KL.LE.KU ) THEN
  245. *
  246. * annihilate subdiagonal elements first (necessary if KL = 0)
  247. *
  248. IF( I.LE.MIN( M-1-KL, N ) ) THEN
  249. *
  250. * generate reflection to annihilate A(kl+i+1:m,i)
  251. *
  252. WN = DZNRM2( M-KL-I+1, A( KL+I, I ), 1 )
  253. WA = ( WN / ABS( A( KL+I, I ) ) )*A( KL+I, I )
  254. IF( WN.EQ.ZERO ) THEN
  255. TAU = ZERO
  256. ELSE
  257. WB = A( KL+I, I ) + WA
  258. CALL ZSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 )
  259. A( KL+I, I ) = ONE
  260. TAU = DBLE( WB / WA )
  261. END IF
  262. *
  263. * apply reflection to A(kl+i:m,i+1:n) from the left
  264. *
  265. CALL ZGEMV( 'Conjugate transpose', M-KL-I+1, N-I, ONE,
  266. $ A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO,
  267. $ WORK, 1 )
  268. CALL ZGERC( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK,
  269. $ 1, A( KL+I, I+1 ), LDA )
  270. A( KL+I, I ) = -WA
  271. END IF
  272. *
  273. IF( I.LE.MIN( N-1-KU, M ) ) THEN
  274. *
  275. * generate reflection to annihilate A(i,ku+i+1:n)
  276. *
  277. WN = DZNRM2( N-KU-I+1, A( I, KU+I ), LDA )
  278. WA = ( WN / ABS( A( I, KU+I ) ) )*A( I, KU+I )
  279. IF( WN.EQ.ZERO ) THEN
  280. TAU = ZERO
  281. ELSE
  282. WB = A( I, KU+I ) + WA
  283. CALL ZSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA )
  284. A( I, KU+I ) = ONE
  285. TAU = DBLE( WB / WA )
  286. END IF
  287. *
  288. * apply reflection to A(i+1:m,ku+i:n) from the right
  289. *
  290. CALL ZLACGV( N-KU-I+1, A( I, KU+I ), LDA )
  291. CALL ZGEMV( 'No transpose', M-I, N-KU-I+1, ONE,
  292. $ A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO,
  293. $ WORK, 1 )
  294. CALL ZGERC( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ),
  295. $ LDA, A( I+1, KU+I ), LDA )
  296. A( I, KU+I ) = -WA
  297. END IF
  298. ELSE
  299. *
  300. * annihilate superdiagonal elements first (necessary if
  301. * KU = 0)
  302. *
  303. IF( I.LE.MIN( N-1-KU, M ) ) THEN
  304. *
  305. * generate reflection to annihilate A(i,ku+i+1:n)
  306. *
  307. WN = DZNRM2( N-KU-I+1, A( I, KU+I ), LDA )
  308. WA = ( WN / ABS( A( I, KU+I ) ) )*A( I, KU+I )
  309. IF( WN.EQ.ZERO ) THEN
  310. TAU = ZERO
  311. ELSE
  312. WB = A( I, KU+I ) + WA
  313. CALL ZSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA )
  314. A( I, KU+I ) = ONE
  315. TAU = DBLE( WB / WA )
  316. END IF
  317. *
  318. * apply reflection to A(i+1:m,ku+i:n) from the right
  319. *
  320. CALL ZLACGV( N-KU-I+1, A( I, KU+I ), LDA )
  321. CALL ZGEMV( 'No transpose', M-I, N-KU-I+1, ONE,
  322. $ A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO,
  323. $ WORK, 1 )
  324. CALL ZGERC( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ),
  325. $ LDA, A( I+1, KU+I ), LDA )
  326. A( I, KU+I ) = -WA
  327. END IF
  328. *
  329. IF( I.LE.MIN( M-1-KL, N ) ) THEN
  330. *
  331. * generate reflection to annihilate A(kl+i+1:m,i)
  332. *
  333. WN = DZNRM2( M-KL-I+1, A( KL+I, I ), 1 )
  334. WA = ( WN / ABS( A( KL+I, I ) ) )*A( KL+I, I )
  335. IF( WN.EQ.ZERO ) THEN
  336. TAU = ZERO
  337. ELSE
  338. WB = A( KL+I, I ) + WA
  339. CALL ZSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 )
  340. A( KL+I, I ) = ONE
  341. TAU = DBLE( WB / WA )
  342. END IF
  343. *
  344. * apply reflection to A(kl+i:m,i+1:n) from the left
  345. *
  346. CALL ZGEMV( 'Conjugate transpose', M-KL-I+1, N-I, ONE,
  347. $ A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO,
  348. $ WORK, 1 )
  349. CALL ZGERC( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK,
  350. $ 1, A( KL+I, I+1 ), LDA )
  351. A( KL+I, I ) = -WA
  352. END IF
  353. END IF
  354. *
  355. IF (I .LE. N) THEN
  356. DO 50 J = KL + I + 1, M
  357. A( J, I ) = ZERO
  358. 50 CONTINUE
  359. END IF
  360. *
  361. IF (I .LE. M) THEN
  362. DO 60 J = KU + I + 1, N
  363. A( I, J ) = ZERO
  364. 60 CONTINUE
  365. END IF
  366. 70 CONTINUE
  367. RETURN
  368. *
  369. * End of ZLAGGE
  370. *
  371. END