You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zqrt01.f 6.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233
  1. *> \brief \b ZQRT01
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZQRT01( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
  12. * RWORK, RESULT )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER LDA, LWORK, M, N
  16. * ..
  17. * .. Array Arguments ..
  18. * DOUBLE PRECISION RESULT( * ), RWORK( * )
  19. * COMPLEX*16 A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
  20. * $ R( LDA, * ), TAU( * ), WORK( LWORK )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> ZQRT01 tests ZGEQRF, which computes the QR factorization of an m-by-n
  30. *> matrix A, and partially tests ZUNGQR which forms the m-by-m
  31. *> orthogonal matrix Q.
  32. *>
  33. *> ZQRT01 compares R with Q'*A, and checks that Q is orthogonal.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] M
  40. *> \verbatim
  41. *> M is INTEGER
  42. *> The number of rows of the matrix A. M >= 0.
  43. *> \endverbatim
  44. *>
  45. *> \param[in] N
  46. *> \verbatim
  47. *> N is INTEGER
  48. *> The number of columns of the matrix A. N >= 0.
  49. *> \endverbatim
  50. *>
  51. *> \param[in] A
  52. *> \verbatim
  53. *> A is COMPLEX*16 array, dimension (LDA,N)
  54. *> The m-by-n matrix A.
  55. *> \endverbatim
  56. *>
  57. *> \param[out] AF
  58. *> \verbatim
  59. *> AF is COMPLEX*16 array, dimension (LDA,N)
  60. *> Details of the QR factorization of A, as returned by ZGEQRF.
  61. *> See ZGEQRF for further details.
  62. *> \endverbatim
  63. *>
  64. *> \param[out] Q
  65. *> \verbatim
  66. *> Q is COMPLEX*16 array, dimension (LDA,M)
  67. *> The m-by-m orthogonal matrix Q.
  68. *> \endverbatim
  69. *>
  70. *> \param[out] R
  71. *> \verbatim
  72. *> R is COMPLEX*16 array, dimension (LDA,max(M,N))
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the arrays A, AF, Q and R.
  79. *> LDA >= max(M,N).
  80. *> \endverbatim
  81. *>
  82. *> \param[out] TAU
  83. *> \verbatim
  84. *> TAU is COMPLEX*16 array, dimension (min(M,N))
  85. *> The scalar factors of the elementary reflectors, as returned
  86. *> by ZGEQRF.
  87. *> \endverbatim
  88. *>
  89. *> \param[out] WORK
  90. *> \verbatim
  91. *> WORK is COMPLEX*16 array, dimension (LWORK)
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LWORK
  95. *> \verbatim
  96. *> LWORK is INTEGER
  97. *> The dimension of the array WORK.
  98. *> \endverbatim
  99. *>
  100. *> \param[out] RWORK
  101. *> \verbatim
  102. *> RWORK is DOUBLE PRECISION array, dimension (M)
  103. *> \endverbatim
  104. *>
  105. *> \param[out] RESULT
  106. *> \verbatim
  107. *> RESULT is DOUBLE PRECISION array, dimension (2)
  108. *> The test ratios:
  109. *> RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS )
  110. *> RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
  111. *> \endverbatim
  112. *
  113. * Authors:
  114. * ========
  115. *
  116. *> \author Univ. of Tennessee
  117. *> \author Univ. of California Berkeley
  118. *> \author Univ. of Colorado Denver
  119. *> \author NAG Ltd.
  120. *
  121. *> \date December 2016
  122. *
  123. *> \ingroup complex16_lin
  124. *
  125. * =====================================================================
  126. SUBROUTINE ZQRT01( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
  127. $ RWORK, RESULT )
  128. *
  129. * -- LAPACK test routine (version 3.7.0) --
  130. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  131. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  132. * December 2016
  133. *
  134. * .. Scalar Arguments ..
  135. INTEGER LDA, LWORK, M, N
  136. * ..
  137. * .. Array Arguments ..
  138. DOUBLE PRECISION RESULT( * ), RWORK( * )
  139. COMPLEX*16 A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
  140. $ R( LDA, * ), TAU( * ), WORK( LWORK )
  141. * ..
  142. *
  143. * =====================================================================
  144. *
  145. * .. Parameters ..
  146. DOUBLE PRECISION ZERO, ONE
  147. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  148. COMPLEX*16 ROGUE
  149. PARAMETER ( ROGUE = ( -1.0D+10, -1.0D+10 ) )
  150. * ..
  151. * .. Local Scalars ..
  152. INTEGER INFO, MINMN
  153. DOUBLE PRECISION ANORM, EPS, RESID
  154. * ..
  155. * .. External Functions ..
  156. DOUBLE PRECISION DLAMCH, ZLANGE, ZLANSY
  157. EXTERNAL DLAMCH, ZLANGE, ZLANSY
  158. * ..
  159. * .. External Subroutines ..
  160. EXTERNAL ZGEMM, ZGEQRF, ZHERK, ZLACPY, ZLASET, ZUNGQR
  161. * ..
  162. * .. Intrinsic Functions ..
  163. INTRINSIC DBLE, DCMPLX, MAX, MIN
  164. * ..
  165. * .. Scalars in Common ..
  166. CHARACTER*32 SRNAMT
  167. * ..
  168. * .. Common blocks ..
  169. COMMON / SRNAMC / SRNAMT
  170. * ..
  171. * .. Executable Statements ..
  172. *
  173. MINMN = MIN( M, N )
  174. EPS = DLAMCH( 'Epsilon' )
  175. *
  176. * Copy the matrix A to the array AF.
  177. *
  178. CALL ZLACPY( 'Full', M, N, A, LDA, AF, LDA )
  179. *
  180. * Factorize the matrix A in the array AF.
  181. *
  182. SRNAMT = 'ZGEQRF'
  183. CALL ZGEQRF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
  184. *
  185. * Copy details of Q
  186. *
  187. CALL ZLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA )
  188. CALL ZLACPY( 'Lower', M-1, N, AF( 2, 1 ), LDA, Q( 2, 1 ), LDA )
  189. *
  190. * Generate the m-by-m matrix Q
  191. *
  192. SRNAMT = 'ZUNGQR'
  193. CALL ZUNGQR( M, M, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
  194. *
  195. * Copy R
  196. *
  197. CALL ZLASET( 'Full', M, N, DCMPLX( ZERO ), DCMPLX( ZERO ), R,
  198. $ LDA )
  199. CALL ZLACPY( 'Upper', M, N, AF, LDA, R, LDA )
  200. *
  201. * Compute R - Q'*A
  202. *
  203. CALL ZGEMM( 'Conjugate transpose', 'No transpose', M, N, M,
  204. $ DCMPLX( -ONE ), Q, LDA, A, LDA, DCMPLX( ONE ), R,
  205. $ LDA )
  206. *
  207. * Compute norm( R - Q'*A ) / ( M * norm(A) * EPS ) .
  208. *
  209. ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
  210. RESID = ZLANGE( '1', M, N, R, LDA, RWORK )
  211. IF( ANORM.GT.ZERO ) THEN
  212. RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, M ) ) ) / ANORM ) / EPS
  213. ELSE
  214. RESULT( 1 ) = ZERO
  215. END IF
  216. *
  217. * Compute I - Q'*Q
  218. *
  219. CALL ZLASET( 'Full', M, M, DCMPLX( ZERO ), DCMPLX( ONE ), R, LDA )
  220. CALL ZHERK( 'Upper', 'Conjugate transpose', M, M, -ONE, Q, LDA,
  221. $ ONE, R, LDA )
  222. *
  223. * Compute norm( I - Q'*Q ) / ( M * EPS ) .
  224. *
  225. RESID = ZLANSY( '1', 'Upper', M, R, LDA, RWORK )
  226. *
  227. RESULT( 2 ) = ( RESID / DBLE( MAX( 1, M ) ) ) / EPS
  228. *
  229. RETURN
  230. *
  231. * End of ZQRT01
  232. *
  233. END