You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhpt01.f 6.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. *> \brief \b ZHPT01
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZHPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
  12. *
  13. * .. Scalar Arguments ..
  14. * CHARACTER UPLO
  15. * INTEGER LDC, N
  16. * DOUBLE PRECISION RESID
  17. * ..
  18. * .. Array Arguments ..
  19. * INTEGER IPIV( * )
  20. * DOUBLE PRECISION RWORK( * )
  21. * COMPLEX*16 A( * ), AFAC( * ), C( LDC, * )
  22. * ..
  23. *
  24. *
  25. *> \par Purpose:
  26. * =============
  27. *>
  28. *> \verbatim
  29. *>
  30. *> ZHPT01 reconstructs a Hermitian indefinite packed matrix A from its
  31. *> block L*D*L' or U*D*U' factorization and computes the residual
  32. *> norm( C - A ) / ( N * norm(A) * EPS ),
  33. *> where C is the reconstructed matrix, EPS is the machine epsilon,
  34. *> L' is the conjugate transpose of L, and U' is the conjugate transpose
  35. *> of U.
  36. *> \endverbatim
  37. *
  38. * Arguments:
  39. * ==========
  40. *
  41. *> \param[in] UPLO
  42. *> \verbatim
  43. *> UPLO is CHARACTER*1
  44. *> Specifies whether the upper or lower triangular part of the
  45. *> Hermitian matrix A is stored:
  46. *> = 'U': Upper triangular
  47. *> = 'L': Lower triangular
  48. *> \endverbatim
  49. *>
  50. *> \param[in] N
  51. *> \verbatim
  52. *> N is INTEGER
  53. *> The number of rows and columns of the matrix A. N >= 0.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] A
  57. *> \verbatim
  58. *> A is COMPLEX*16 array, dimension (N*(N+1)/2)
  59. *> The original Hermitian matrix A, stored as a packed
  60. *> triangular matrix.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] AFAC
  64. *> \verbatim
  65. *> AFAC is COMPLEX*16 array, dimension (N*(N+1)/2)
  66. *> The factored form of the matrix A, stored as a packed
  67. *> triangular matrix. AFAC contains the block diagonal matrix D
  68. *> and the multipliers used to obtain the factor L or U from the
  69. *> block L*D*L' or U*D*U' factorization as computed by ZHPTRF.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] IPIV
  73. *> \verbatim
  74. *> IPIV is INTEGER array, dimension (N)
  75. *> The pivot indices from ZHPTRF.
  76. *> \endverbatim
  77. *>
  78. *> \param[out] C
  79. *> \verbatim
  80. *> C is COMPLEX*16 array, dimension (LDC,N)
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDC
  84. *> \verbatim
  85. *> LDC is INTEGER
  86. *> The leading dimension of the array C. LDC >= max(1,N).
  87. *> \endverbatim
  88. *>
  89. *> \param[out] RWORK
  90. *> \verbatim
  91. *> RWORK is DOUBLE PRECISION array, dimension (N)
  92. *> \endverbatim
  93. *>
  94. *> \param[out] RESID
  95. *> \verbatim
  96. *> RESID is DOUBLE PRECISION
  97. *> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
  98. *> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
  99. *> \endverbatim
  100. *
  101. * Authors:
  102. * ========
  103. *
  104. *> \author Univ. of Tennessee
  105. *> \author Univ. of California Berkeley
  106. *> \author Univ. of Colorado Denver
  107. *> \author NAG Ltd.
  108. *
  109. *> \date December 2016
  110. *
  111. *> \ingroup complex16_lin
  112. *
  113. * =====================================================================
  114. SUBROUTINE ZHPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
  115. *
  116. * -- LAPACK test routine (version 3.7.0) --
  117. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  118. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  119. * December 2016
  120. *
  121. * .. Scalar Arguments ..
  122. CHARACTER UPLO
  123. INTEGER LDC, N
  124. DOUBLE PRECISION RESID
  125. * ..
  126. * .. Array Arguments ..
  127. INTEGER IPIV( * )
  128. DOUBLE PRECISION RWORK( * )
  129. COMPLEX*16 A( * ), AFAC( * ), C( LDC, * )
  130. * ..
  131. *
  132. * =====================================================================
  133. *
  134. * .. Parameters ..
  135. DOUBLE PRECISION ZERO, ONE
  136. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  137. COMPLEX*16 CZERO, CONE
  138. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
  139. $ CONE = ( 1.0D+0, 0.0D+0 ) )
  140. * ..
  141. * .. Local Scalars ..
  142. INTEGER I, INFO, J, JC
  143. DOUBLE PRECISION ANORM, EPS
  144. * ..
  145. * .. External Functions ..
  146. LOGICAL LSAME
  147. DOUBLE PRECISION DLAMCH, ZLANHE, ZLANHP
  148. EXTERNAL LSAME, DLAMCH, ZLANHE, ZLANHP
  149. * ..
  150. * .. External Subroutines ..
  151. EXTERNAL ZLASET, ZLAVHP
  152. * ..
  153. * .. Intrinsic Functions ..
  154. INTRINSIC DBLE, DIMAG
  155. * ..
  156. * .. Executable Statements ..
  157. *
  158. * Quick exit if N = 0.
  159. *
  160. IF( N.LE.0 ) THEN
  161. RESID = ZERO
  162. RETURN
  163. END IF
  164. *
  165. * Determine EPS and the norm of A.
  166. *
  167. EPS = DLAMCH( 'Epsilon' )
  168. ANORM = ZLANHP( '1', UPLO, N, A, RWORK )
  169. *
  170. * Check the imaginary parts of the diagonal elements and return with
  171. * an error code if any are nonzero.
  172. *
  173. JC = 1
  174. IF( LSAME( UPLO, 'U' ) ) THEN
  175. DO 10 J = 1, N
  176. IF( DIMAG( AFAC( JC ) ).NE.ZERO ) THEN
  177. RESID = ONE / EPS
  178. RETURN
  179. END IF
  180. JC = JC + J + 1
  181. 10 CONTINUE
  182. ELSE
  183. DO 20 J = 1, N
  184. IF( DIMAG( AFAC( JC ) ).NE.ZERO ) THEN
  185. RESID = ONE / EPS
  186. RETURN
  187. END IF
  188. JC = JC + N - J + 1
  189. 20 CONTINUE
  190. END IF
  191. *
  192. * Initialize C to the identity matrix.
  193. *
  194. CALL ZLASET( 'Full', N, N, CZERO, CONE, C, LDC )
  195. *
  196. * Call ZLAVHP to form the product D * U' (or D * L' ).
  197. *
  198. CALL ZLAVHP( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC, IPIV, C,
  199. $ LDC, INFO )
  200. *
  201. * Call ZLAVHP again to multiply by U ( or L ).
  202. *
  203. CALL ZLAVHP( UPLO, 'No transpose', 'Unit', N, N, AFAC, IPIV, C,
  204. $ LDC, INFO )
  205. *
  206. * Compute the difference C - A .
  207. *
  208. IF( LSAME( UPLO, 'U' ) ) THEN
  209. JC = 0
  210. DO 40 J = 1, N
  211. DO 30 I = 1, J - 1
  212. C( I, J ) = C( I, J ) - A( JC+I )
  213. 30 CONTINUE
  214. C( J, J ) = C( J, J ) - DBLE( A( JC+J ) )
  215. JC = JC + J
  216. 40 CONTINUE
  217. ELSE
  218. JC = 1
  219. DO 60 J = 1, N
  220. C( J, J ) = C( J, J ) - DBLE( A( JC ) )
  221. DO 50 I = J + 1, N
  222. C( I, J ) = C( I, J ) - A( JC+I-J )
  223. 50 CONTINUE
  224. JC = JC + N - J + 1
  225. 60 CONTINUE
  226. END IF
  227. *
  228. * Compute norm( C - A ) / ( N * norm(A) * EPS )
  229. *
  230. RESID = ZLANHE( '1', UPLO, N, C, LDC, RWORK )
  231. *
  232. IF( ANORM.LE.ZERO ) THEN
  233. IF( RESID.NE.ZERO )
  234. $ RESID = ONE / EPS
  235. ELSE
  236. RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
  237. END IF
  238. *
  239. RETURN
  240. *
  241. * End of ZHPT01
  242. *
  243. END