You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssyt01.f 5.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223
  1. *> \brief \b SSYT01
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE SSYT01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
  12. * RWORK, RESID )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER UPLO
  16. * INTEGER LDA, LDAFAC, LDC, N
  17. * REAL RESID
  18. * ..
  19. * .. Array Arguments ..
  20. * INTEGER IPIV( * )
  21. * REAL A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
  22. * $ RWORK( * )
  23. * ..
  24. *
  25. *
  26. *> \par Purpose:
  27. * =============
  28. *>
  29. *> \verbatim
  30. *>
  31. *> SSYT01 reconstructs a symmetric indefinite matrix A from its
  32. *> block L*D*L' or U*D*U' factorization and computes the residual
  33. *> norm( C - A ) / ( N * norm(A) * EPS ),
  34. *> where C is the reconstructed matrix and EPS is the machine epsilon.
  35. *> \endverbatim
  36. *
  37. * Arguments:
  38. * ==========
  39. *
  40. *> \param[in] UPLO
  41. *> \verbatim
  42. *> UPLO is CHARACTER*1
  43. *> Specifies whether the upper or lower triangular part of the
  44. *> symmetric matrix A is stored:
  45. *> = 'U': Upper triangular
  46. *> = 'L': Lower triangular
  47. *> \endverbatim
  48. *>
  49. *> \param[in] N
  50. *> \verbatim
  51. *> N is INTEGER
  52. *> The number of rows and columns of the matrix A. N >= 0.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] A
  56. *> \verbatim
  57. *> A is REAL array, dimension (LDA,N)
  58. *> The original symmetric matrix A.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] LDA
  62. *> \verbatim
  63. *> LDA is INTEGER
  64. *> The leading dimension of the array A. LDA >= max(1,N)
  65. *> \endverbatim
  66. *>
  67. *> \param[in] AFAC
  68. *> \verbatim
  69. *> AFAC is REAL array, dimension (LDAFAC,N)
  70. *> The factored form of the matrix A. AFAC contains the block
  71. *> diagonal matrix D and the multipliers used to obtain the
  72. *> factor L or U from the block L*D*L' or U*D*U' factorization
  73. *> as computed by SSYTRF.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] LDAFAC
  77. *> \verbatim
  78. *> LDAFAC is INTEGER
  79. *> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
  80. *> \endverbatim
  81. *>
  82. *> \param[in] IPIV
  83. *> \verbatim
  84. *> IPIV is INTEGER array, dimension (N)
  85. *> The pivot indices from SSYTRF.
  86. *> \endverbatim
  87. *>
  88. *> \param[out] C
  89. *> \verbatim
  90. *> C is REAL array, dimension (LDC,N)
  91. *> \endverbatim
  92. *>
  93. *> \param[in] LDC
  94. *> \verbatim
  95. *> LDC is INTEGER
  96. *> The leading dimension of the array C. LDC >= max(1,N).
  97. *> \endverbatim
  98. *>
  99. *> \param[out] RWORK
  100. *> \verbatim
  101. *> RWORK is REAL array, dimension (N)
  102. *> \endverbatim
  103. *>
  104. *> \param[out] RESID
  105. *> \verbatim
  106. *> RESID is REAL
  107. *> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
  108. *> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
  109. *> \endverbatim
  110. *
  111. * Authors:
  112. * ========
  113. *
  114. *> \author Univ. of Tennessee
  115. *> \author Univ. of California Berkeley
  116. *> \author Univ. of Colorado Denver
  117. *> \author NAG Ltd.
  118. *
  119. *> \date November 2013
  120. *
  121. *> \ingroup single_lin
  122. *
  123. * =====================================================================
  124. SUBROUTINE SSYT01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
  125. $ RWORK, RESID )
  126. *
  127. * -- LAPACK test routine (version 3.5.0) --
  128. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  129. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  130. * November 2013
  131. *
  132. * .. Scalar Arguments ..
  133. CHARACTER UPLO
  134. INTEGER LDA, LDAFAC, LDC, N
  135. REAL RESID
  136. * ..
  137. * .. Array Arguments ..
  138. INTEGER IPIV( * )
  139. REAL A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
  140. $ RWORK( * )
  141. * ..
  142. *
  143. * =====================================================================
  144. *
  145. * .. Parameters ..
  146. REAL ZERO, ONE
  147. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  148. * ..
  149. * .. Local Scalars ..
  150. INTEGER I, INFO, J
  151. REAL ANORM, EPS
  152. * ..
  153. * .. External Functions ..
  154. LOGICAL LSAME
  155. REAL SLAMCH, SLANSY
  156. EXTERNAL LSAME, SLAMCH, SLANSY
  157. * ..
  158. * .. External Subroutines ..
  159. EXTERNAL SLASET, SLAVSY
  160. * ..
  161. * .. Intrinsic Functions ..
  162. INTRINSIC REAL
  163. * ..
  164. * .. Executable Statements ..
  165. *
  166. * Quick exit if N = 0.
  167. *
  168. IF( N.LE.0 ) THEN
  169. RESID = ZERO
  170. RETURN
  171. END IF
  172. *
  173. * Determine EPS and the norm of A.
  174. *
  175. EPS = SLAMCH( 'Epsilon' )
  176. ANORM = SLANSY( '1', UPLO, N, A, LDA, RWORK )
  177. *
  178. * Initialize C to the identity matrix.
  179. *
  180. CALL SLASET( 'Full', N, N, ZERO, ONE, C, LDC )
  181. *
  182. * Call SLAVSY to form the product D * U' (or D * L' ).
  183. *
  184. CALL SLAVSY( UPLO, 'Transpose', 'Non-unit', N, N, AFAC, LDAFAC,
  185. $ IPIV, C, LDC, INFO )
  186. *
  187. * Call SLAVSY again to multiply by U (or L ).
  188. *
  189. CALL SLAVSY( UPLO, 'No transpose', 'Unit', N, N, AFAC, LDAFAC,
  190. $ IPIV, C, LDC, INFO )
  191. *
  192. * Compute the difference C - A .
  193. *
  194. IF( LSAME( UPLO, 'U' ) ) THEN
  195. DO 20 J = 1, N
  196. DO 10 I = 1, J
  197. C( I, J ) = C( I, J ) - A( I, J )
  198. 10 CONTINUE
  199. 20 CONTINUE
  200. ELSE
  201. DO 40 J = 1, N
  202. DO 30 I = J, N
  203. C( I, J ) = C( I, J ) - A( I, J )
  204. 30 CONTINUE
  205. 40 CONTINUE
  206. END IF
  207. *
  208. * Compute norm( C - A ) / ( N * norm(A) * EPS )
  209. *
  210. RESID = SLANSY( '1', UPLO, N, C, LDC, RWORK )
  211. *
  212. IF( ANORM.LE.ZERO ) THEN
  213. IF( RESID.NE.ZERO )
  214. $ RESID = ONE / EPS
  215. ELSE
  216. RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
  217. END IF
  218. *
  219. RETURN
  220. *
  221. * End of SSYT01
  222. *
  223. END