You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sppt05.f 8.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284
  1. *> \brief \b SPPT05
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE SPPT05( UPLO, N, NRHS, AP, B, LDB, X, LDX, XACT,
  12. * LDXACT, FERR, BERR, RESLTS )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER UPLO
  16. * INTEGER LDB, LDX, LDXACT, N, NRHS
  17. * ..
  18. * .. Array Arguments ..
  19. * REAL AP( * ), B( LDB, * ), BERR( * ), FERR( * ),
  20. * $ RESLTS( * ), X( LDX, * ), XACT( LDXACT, * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> SPPT05 tests the error bounds from iterative refinement for the
  30. *> computed solution to a system of equations A*X = B, where A is a
  31. *> symmetric matrix in packed storage format.
  32. *>
  33. *> RESLTS(1) = test of the error bound
  34. *> = norm(X - XACT) / ( norm(X) * FERR )
  35. *>
  36. *> A large value is returned if this ratio is not less than one.
  37. *>
  38. *> RESLTS(2) = residual from the iterative refinement routine
  39. *> = the maximum of BERR / ( (n+1)*EPS + (*) ), where
  40. *> (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> Specifies whether the upper or lower triangular part of the
  50. *> symmetric matrix A is stored.
  51. *> = 'U': Upper triangular
  52. *> = 'L': Lower triangular
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The number of rows of the matrices X, B, and XACT, and the
  59. *> order of the matrix A. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] NRHS
  63. *> \verbatim
  64. *> NRHS is INTEGER
  65. *> The number of columns of the matrices X, B, and XACT.
  66. *> NRHS >= 0.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] AP
  70. *> \verbatim
  71. *> AP is REAL array, dimension (N*(N+1)/2)
  72. *> The upper or lower triangle of the symmetric matrix A, packed
  73. *> columnwise in a linear array. The j-th column of A is stored
  74. *> in the array AP as follows:
  75. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  76. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] B
  80. *> \verbatim
  81. *> B is REAL array, dimension (LDB,NRHS)
  82. *> The right hand side vectors for the system of linear
  83. *> equations.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] LDB
  87. *> \verbatim
  88. *> LDB is INTEGER
  89. *> The leading dimension of the array B. LDB >= max(1,N).
  90. *> \endverbatim
  91. *>
  92. *> \param[in] X
  93. *> \verbatim
  94. *> X is REAL array, dimension (LDX,NRHS)
  95. *> The computed solution vectors. Each vector is stored as a
  96. *> column of the matrix X.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] LDX
  100. *> \verbatim
  101. *> LDX is INTEGER
  102. *> The leading dimension of the array X. LDX >= max(1,N).
  103. *> \endverbatim
  104. *>
  105. *> \param[in] XACT
  106. *> \verbatim
  107. *> XACT is REAL array, dimension (LDX,NRHS)
  108. *> The exact solution vectors. Each vector is stored as a
  109. *> column of the matrix XACT.
  110. *> \endverbatim
  111. *>
  112. *> \param[in] LDXACT
  113. *> \verbatim
  114. *> LDXACT is INTEGER
  115. *> The leading dimension of the array XACT. LDXACT >= max(1,N).
  116. *> \endverbatim
  117. *>
  118. *> \param[in] FERR
  119. *> \verbatim
  120. *> FERR is REAL array, dimension (NRHS)
  121. *> The estimated forward error bounds for each solution vector
  122. *> X. If XTRUE is the true solution, FERR bounds the magnitude
  123. *> of the largest entry in (X - XTRUE) divided by the magnitude
  124. *> of the largest entry in X.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] BERR
  128. *> \verbatim
  129. *> BERR is REAL array, dimension (NRHS)
  130. *> The componentwise relative backward error of each solution
  131. *> vector (i.e., the smallest relative change in any entry of A
  132. *> or B that makes X an exact solution).
  133. *> \endverbatim
  134. *>
  135. *> \param[out] RESLTS
  136. *> \verbatim
  137. *> RESLTS is REAL array, dimension (2)
  138. *> The maximum over the NRHS solution vectors of the ratios:
  139. *> RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
  140. *> RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
  141. *> \endverbatim
  142. *
  143. * Authors:
  144. * ========
  145. *
  146. *> \author Univ. of Tennessee
  147. *> \author Univ. of California Berkeley
  148. *> \author Univ. of Colorado Denver
  149. *> \author NAG Ltd.
  150. *
  151. *> \date December 2016
  152. *
  153. *> \ingroup single_lin
  154. *
  155. * =====================================================================
  156. SUBROUTINE SPPT05( UPLO, N, NRHS, AP, B, LDB, X, LDX, XACT,
  157. $ LDXACT, FERR, BERR, RESLTS )
  158. *
  159. * -- LAPACK test routine (version 3.7.0) --
  160. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  161. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  162. * December 2016
  163. *
  164. * .. Scalar Arguments ..
  165. CHARACTER UPLO
  166. INTEGER LDB, LDX, LDXACT, N, NRHS
  167. * ..
  168. * .. Array Arguments ..
  169. REAL AP( * ), B( LDB, * ), BERR( * ), FERR( * ),
  170. $ RESLTS( * ), X( LDX, * ), XACT( LDXACT, * )
  171. * ..
  172. *
  173. * =====================================================================
  174. *
  175. * .. Parameters ..
  176. REAL ZERO, ONE
  177. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  178. * ..
  179. * .. Local Scalars ..
  180. LOGICAL UPPER
  181. INTEGER I, IMAX, J, JC, K
  182. REAL AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
  183. * ..
  184. * .. External Functions ..
  185. LOGICAL LSAME
  186. INTEGER ISAMAX
  187. REAL SLAMCH
  188. EXTERNAL LSAME, ISAMAX, SLAMCH
  189. * ..
  190. * .. Intrinsic Functions ..
  191. INTRINSIC ABS, MAX, MIN
  192. * ..
  193. * .. Executable Statements ..
  194. *
  195. * Quick exit if N = 0 or NRHS = 0.
  196. *
  197. IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
  198. RESLTS( 1 ) = ZERO
  199. RESLTS( 2 ) = ZERO
  200. RETURN
  201. END IF
  202. *
  203. EPS = SLAMCH( 'Epsilon' )
  204. UNFL = SLAMCH( 'Safe minimum' )
  205. OVFL = ONE / UNFL
  206. UPPER = LSAME( UPLO, 'U' )
  207. *
  208. * Test 1: Compute the maximum of
  209. * norm(X - XACT) / ( norm(X) * FERR )
  210. * over all the vectors X and XACT using the infinity-norm.
  211. *
  212. ERRBND = ZERO
  213. DO 30 J = 1, NRHS
  214. IMAX = ISAMAX( N, X( 1, J ), 1 )
  215. XNORM = MAX( ABS( X( IMAX, J ) ), UNFL )
  216. DIFF = ZERO
  217. DO 10 I = 1, N
  218. DIFF = MAX( DIFF, ABS( X( I, J )-XACT( I, J ) ) )
  219. 10 CONTINUE
  220. *
  221. IF( XNORM.GT.ONE ) THEN
  222. GO TO 20
  223. ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
  224. GO TO 20
  225. ELSE
  226. ERRBND = ONE / EPS
  227. GO TO 30
  228. END IF
  229. *
  230. 20 CONTINUE
  231. IF( DIFF / XNORM.LE.FERR( J ) ) THEN
  232. ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
  233. ELSE
  234. ERRBND = ONE / EPS
  235. END IF
  236. 30 CONTINUE
  237. RESLTS( 1 ) = ERRBND
  238. *
  239. * Test 2: Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
  240. * (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
  241. *
  242. DO 90 K = 1, NRHS
  243. DO 80 I = 1, N
  244. TMP = ABS( B( I, K ) )
  245. IF( UPPER ) THEN
  246. JC = ( ( I-1 )*I ) / 2
  247. DO 40 J = 1, I
  248. TMP = TMP + ABS( AP( JC+J ) )*ABS( X( J, K ) )
  249. 40 CONTINUE
  250. JC = JC + I
  251. DO 50 J = I + 1, N
  252. TMP = TMP + ABS( AP( JC ) )*ABS( X( J, K ) )
  253. JC = JC + J
  254. 50 CONTINUE
  255. ELSE
  256. JC = I
  257. DO 60 J = 1, I - 1
  258. TMP = TMP + ABS( AP( JC ) )*ABS( X( J, K ) )
  259. JC = JC + N - J
  260. 60 CONTINUE
  261. DO 70 J = I, N
  262. TMP = TMP + ABS( AP( JC+J-I ) )*ABS( X( J, K ) )
  263. 70 CONTINUE
  264. END IF
  265. IF( I.EQ.1 ) THEN
  266. AXBI = TMP
  267. ELSE
  268. AXBI = MIN( AXBI, TMP )
  269. END IF
  270. 80 CONTINUE
  271. TMP = BERR( K ) / ( ( N+1 )*EPS+( N+1 )*UNFL /
  272. $ MAX( AXBI, ( N+1 )*UNFL ) )
  273. IF( K.EQ.1 ) THEN
  274. RESLTS( 2 ) = TMP
  275. ELSE
  276. RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
  277. END IF
  278. 90 CONTINUE
  279. *
  280. RETURN
  281. *
  282. * End of SPPT05
  283. *
  284. END