|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288 |
- *> \brief \b CTBT03
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CTBT03( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB,
- * SCALE, CNORM, TSCAL, X, LDX, B, LDB, WORK,
- * RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIAG, TRANS, UPLO
- * INTEGER KD, LDAB, LDB, LDX, N, NRHS
- * REAL RESID, SCALE, TSCAL
- * ..
- * .. Array Arguments ..
- * REAL CNORM( * )
- * COMPLEX AB( LDAB, * ), B( LDB, * ), WORK( * ),
- * $ X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CTBT03 computes the residual for the solution to a scaled triangular
- *> system of equations A*x = s*b, A**T *x = s*b, or A**H *x = s*b
- *> when A is a triangular band matrix. Here A**T denotes the transpose
- *> of A, A**H denotes the conjugate transpose of A, s is a scalar, and
- *> x and b are N by NRHS matrices. The test ratio is the maximum over
- *> the number of right hand sides of
- *> norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
- *> where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the matrix A is upper or lower triangular.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the operation applied to A.
- *> = 'N': A *x = s*b (No transpose)
- *> = 'T': A**T *x = s*b (Transpose)
- *> = 'C': A**H *x = s*b (Conjugate transpose)
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> Specifies whether or not the matrix A is unit triangular.
- *> = 'N': Non-unit triangular
- *> = 'U': Unit triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KD
- *> \verbatim
- *> KD is INTEGER
- *> The number of superdiagonals or subdiagonals of the
- *> triangular band matrix A. KD >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices X and B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] AB
- *> \verbatim
- *> AB is COMPLEX array, dimension (LDAB,N)
- *> The upper or lower triangular band matrix A, stored in the
- *> first kd+1 rows of the array. The j-th column of A is stored
- *> in the j-th column of the array AB as follows:
- *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
- *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KD+1.
- *> \endverbatim
- *>
- *> \param[in] SCALE
- *> \verbatim
- *> SCALE is REAL
- *> The scaling factor s used in solving the triangular system.
- *> \endverbatim
- *>
- *> \param[in] CNORM
- *> \verbatim
- *> CNORM is REAL array, dimension (N)
- *> The 1-norms of the columns of A, not counting the diagonal.
- *> \endverbatim
- *>
- *> \param[in] TSCAL
- *> \verbatim
- *> TSCAL is REAL
- *> The scaling factor used in computing the 1-norms in CNORM.
- *> CNORM actually contains the column norms of TSCAL*A.
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is COMPLEX array, dimension (LDX,NRHS)
- *> The computed solution vectors for the system of linear
- *> equations.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB,NRHS)
- *> The right hand side vectors for the system of linear
- *> equations.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is REAL
- *> The maximum over the number of right hand sides of
- *> norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CTBT03( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB,
- $ SCALE, CNORM, TSCAL, X, LDX, B, LDB, WORK,
- $ RESID )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER DIAG, TRANS, UPLO
- INTEGER KD, LDAB, LDB, LDX, N, NRHS
- REAL RESID, SCALE, TSCAL
- * ..
- * .. Array Arguments ..
- REAL CNORM( * )
- COMPLEX AB( LDAB, * ), B( LDB, * ), WORK( * ),
- $ X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER IX, J
- REAL EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ICAMAX
- REAL SLAMCH
- EXTERNAL LSAME, ICAMAX, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL CAXPY, CCOPY, CSSCAL, CTBMV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, CMPLX, MAX, REAL
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0
- *
- IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
- RESID = ZERO
- RETURN
- END IF
- EPS = SLAMCH( 'Epsilon' )
- SMLNUM = SLAMCH( 'Safe minimum' )
- *
- * Compute the norm of the triangular matrix A using the column
- * norms already computed by CLATBS.
- *
- TNORM = ZERO
- IF( LSAME( DIAG, 'N' ) ) THEN
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO 10 J = 1, N
- TNORM = MAX( TNORM, TSCAL*ABS( AB( KD+1, J ) )+
- $ CNORM( J ) )
- 10 CONTINUE
- ELSE
- DO 20 J = 1, N
- TNORM = MAX( TNORM, TSCAL*ABS( AB( 1, J ) )+CNORM( J ) )
- 20 CONTINUE
- END IF
- ELSE
- DO 30 J = 1, N
- TNORM = MAX( TNORM, TSCAL+CNORM( J ) )
- 30 CONTINUE
- END IF
- *
- * Compute the maximum over the number of right hand sides of
- * norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
- *
- RESID = ZERO
- DO 40 J = 1, NRHS
- CALL CCOPY( N, X( 1, J ), 1, WORK, 1 )
- IX = ICAMAX( N, WORK, 1 )
- XNORM = MAX( ONE, ABS( X( IX, J ) ) )
- XSCAL = ( ONE / XNORM ) / REAL( KD+1 )
- CALL CSSCAL( N, XSCAL, WORK, 1 )
- CALL CTBMV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, WORK, 1 )
- CALL CAXPY( N, CMPLX( -SCALE*XSCAL ), B( 1, J ), 1, WORK, 1 )
- IX = ICAMAX( N, WORK, 1 )
- ERR = TSCAL*ABS( WORK( IX ) )
- IX = ICAMAX( N, X( 1, J ), 1 )
- XNORM = ABS( X( IX, J ) )
- IF( ERR*SMLNUM.LE.XNORM ) THEN
- IF( XNORM.GT.ZERO )
- $ ERR = ERR / XNORM
- ELSE
- IF( ERR.GT.ZERO )
- $ ERR = ONE / EPS
- END IF
- IF( ERR*SMLNUM.LE.TNORM ) THEN
- IF( TNORM.GT.ZERO )
- $ ERR = ERR / TNORM
- ELSE
- IF( ERR.GT.ZERO )
- $ ERR = ONE / EPS
- END IF
- RESID = MAX( RESID, ERR )
- 40 CONTINUE
- *
- RETURN
- *
- * End of CTBT03
- *
- END
|